Lactic acid extractive fermentation was demonstrated using Alamine 336 in oleyl alcohol at acidic pH. The use of an efficient extraction system was possible through employment of the cell immobilization procedure. Process modeling was performed to relate the various process parameters such as flow rate, concentration, and pH. In experiments with 15% Alamine 336/oleyl alcohol, the bioreactor operation resulted in a higher productivity (12 g/L gel h) compared to that of a control fermentation (7 g/L gel h). Strategies for optimizing the extractive fermentation process were proposed considering both productivity and product recovery.
The toxicity of an Alamine 336/oleyl-alcohol extraction system on Lactobacillus delbrueckii was investigated. It was shown that the solvent affected the cells through the water-soluble portion and the immiscible portion of the solvent. While immobilization significantly protected the cells from the immiscible solvent phase, the water-soluble part of the solvent still caused toxicity to the microorganisms due to diffusion of the solvent into the matrix. Adding soybean oil to the kappa-carrageenan matrix could trap the diffusing solvent molecules, and therefore reduce the toxic effect from the water soluble portion of the solvent. The protective ability of soybean oil was quantified through mathematical modeling and experimentation.
A spinning cylindrical filter is often used to retain mammalian cells in a continuous perfusion bioreactor. This device, known as a spinfilter, has typically been with pore size smaller than the cell particles (single cells or aggregates) in order to achieve cell separation. For single cells in suspension, such an operation cannot be sustained over a long period of time because of clogging of the filter surface. Recently, screens with openings larger than the average cell size have been used to reduce the incidence of clogging. In this article, we have investigated how the screen size affects cell retention. We also showed why it is necessary to optimize the rotational speed of the spinfilter in order to achieve cell retention and reduce screen clogging. Effects of bulk mixing and perfusion rate on screen fouling cell retention, and cell washout were also investigated.
A spinning cylindrical filter, known as a spinfilter, permits the mammalian cell bioreactor operation at high perfusion rates leading to very high cell densities (10(7) mL(-1)). Filter screens with openings (25 mum) slightly larger than the average cell size have been used to retain single cells in suspension over a long period of operation without clogging. We have previously shown why it is necessary to optimize the rotational speed of the spinfilter in order to achieve efficient cell retention and avoid potential screen clogging. Effects of bulk mixing and perfusion rate on screen fouling and cell retention were also investigated. Based on this analysis, in this article, we suggest strategies for scaleup of spinfilters. Experimental data from 12- and 175-L (working volume) bioreactors is shown in support of the scaleup analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.