We present deep Chandra and XMM-Newton observations of the galaxy cluster RDCS 1252.9À2927, which was selected from the ROSAT Deep Cluster Survey (RDCS) and confirmed by extensive spectroscopy with the Very Large Telescope at redshift z = 1.237. With the Chandra data, the X-ray emission from the intracluster medium is well resolved and traced out to 500 kpc, thus allowing a measurement of the physical properties of the gas with unprecedented accuracy at this redshift. We detect a clear 6.7 keV iron K line in the Chandra spectrum providing a redshift within 1% of the spectroscopic one. By augmenting our spectroscopic analysis with the XMM-Newton data (MOS detectors only), we significantly narrow down the 1 error bar to 10% for the temperature and 30% for the metallicity, with best-fit values kT ¼ 6:0 þ0:7 À0:5 keV, Z ¼ 0:36 þ0:12 À0:10 Z . On the likely hypothesis of hydrostatic equilibrium, we measure a total mass of M 500 ¼ ð1:9 AE 0:3Þ Â 10 14 h À1 70 M within R Á=500 ' 536 kpc. Overall, these observations imply that RDCS 1252.9À2927 is the most X-ray luminous and likely the most massive bona fide cluster discovered to date at z > 1. When combined with current samples of distant clusters, these data lend further support to a mild evolution of the cluster scaling relations, as well the metallicity of the intracluster gas. Inspection of the cluster mass function in the current cosmological concordance model (h, m , Ã ) = (0.7, 0.3, 0.7) and 8 = 0.7-0.8 shows that RDCS 1252.9À2927 is an M* cluster at z = 1.24, in keeping with number density expectations in the RDCS survey volume.
We report on the first ALMA observation of the CO(3−2) and rest-frame ∼340 GHz continuum emission in PDS 456, which is the most luminous, radio-quiet QSO in the local Universe (z ≃ 0.18), with a bolometric luminosity LBol ∼ 1047 erg s−1. ALMA angular resolution allowed us to map scales as small as ∼700 pc. The molecular gas reservoir traced by the core of the very bright CO(3−2) emission line is distributed in a compact rotating disk, with a size of ∼1.3 kpc, seen close to face-on (i ∼ 25 deg). Fast CO(3−2) emission in the velocity range v ∈ [ − 1000, 500] km s−1 is also present. Specifically, we detect several blue-shifted clumps out to ∼5 kpc from the nucleus, in addition to a compact (R ≲ 1.2 kpc), broad emission component. These components reveal a galaxy-wide molecular outflow, with a total mass Mmolout ∼ 2.5 × 108 M⊙ (for an αCO = 0.8 M⊙ (K km s−1 pc2)−1) and a mass outflow rate Ṁmol ∼ 290 M⊙ yr−1. The corresponding depletion time is τdep ∼ 8 Myr, shorter than the rate at which the molecular gas is converted into stars, indicating that the detected outflow is potentially able to quench star-formation in the host. The momentum flux of the molecular outflow normalised to the radiative momentum output (i.e. LBol/c) is ≲1, comparable to that of the X-ray ultra-fast outflow (UFO) detected in PDS 456. This is at odds with the expectations for an energy-conserving expansion suggested for most of the large-scale outflows detected in low-luminosity AGNs so far. We suggest three possible scenarios that may explain this observation: (i) in very luminous AGNs such as our target the molecular gas phase is tracing only a fraction of the total outflowing mass; (ii) a small coupling between the shocked gas by the UFO and the host-galaxy interstellar medium (ISM); and (iii) AGN radiation pressure may be playing an important role in driving the outflow.
We present ALMA Band 7 observations at 850µm of 20 luminous (log L bol > 46.9 [erg s −1 ]) unobscured quasars at z ∼ 2. We detect continuum emission for 19/20 quasars. After subtracting an AGN contribution, we measure the total far-IR luminosity for 18 quasars, assuming a modified blackbody model, and attribute the emission as indicative of the star formation rate (SFR). Our sample can be characterized with a log-normal SFR distribution having a mean of 140 M yr −1 and a dispersion of 0.5 dex. Based on an inference of their stellar masses, the SFRs are similar, in both the mean and dispersion, with star-forming main-sequence galaxies at the equivalent epoch. Thus, there is no evidence for a systematic enhancement or suppression (i.e., regulation or quenching) of star formation in the hosts of the most luminous quasars at z ∼ 2. These results are consistent with the Magneticum cosmological simulation, while in disagreement with a widely recognized phenomenological model that predicts higher SFRs than observed here based on the high bolometric luminosities of this sample. Furthermore, there is only a weak relation between SFR and accretion rate onto their supermassive black holes both for average and individual measurements. We interpret these results as indicative of star formation and quasar accretion being fed from the available gas reservoir(s) in their host with a disconnect due to their different physical sizes, temporal scales, and means of gas processing.
Context. The physics and demographics of high-redshift obscured active galactic nuclei (AGN) is still scarcely investigated. New samples of such objects, selected with different techniques, can provide useful insights into their physical properties. Aims. With the goal to determine the properties of the gas in the emitting region of type 2 AGN, in particular, the gas metal content, we exploit predictions from photoionization models, including new parameterizations for the distance of gas distribution from the central source and internal microturbulence in the emitting clouds, to interpret rest-frame UV spectral data. Methods. We selected a sample of 90 obscured (type 2) AGN with 1.45 ≤ z ≤ 3.05 from the zCOSMOS-deep galaxy sample by 5σ detection of the high-ionization C IV λ1549 narrow emission line. This feature in a galaxy spectrum is often associated with nuclear activity, and the selection effectiveness has also been confirmed by diagnostic diagrams based on utraviolet (UV) emission-line ratios. We applied the same selection technique and collected a sample of 102 unobscured (type 1) AGN. Taking advantage of the large amount of multiband data available in the COSMOS field, we investigated the properties of the C IV-selected type 2 AGN, focusing on their host galaxies, X-ray emission, and UV emission lines. Finally, we investigated the physical properties of the ionized gas in the narrow-line region (NLR) of this type 2 AGN sample by combining the analysis of strong UV emission lines with predictions from photoionization models. Results. We find that in order to successfully reproduce the relative intensity of UV emission lines of the selected high-z type 2 AGN, two new ingredients in the photoionization models are fundamental: small inner radii of the NLR (≈90 pc for LAGN = 1045 erg s−1), and the internal dissipative microturbulence of the gas-emitting clouds (with vmicr ≈ 100 km s−1). With these modified models, we compute the gas-phase metallicity of the NLR, and our measurements indicate a statistically significant evolution of the metal content with redshift. Finally, we do not observe a strong relationship between the NLR gas metallicity and the stellar mass of the host galaxy in our C IV-selected type 2 AGN sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.