Antibacterial activity is the most investigated biological property of honey. The goal of this study was to evaluate the antibacterial activity of 57 Slovak blossom honeys against Staphylococcus aureus and Pseudomonas aeruginosa and investigate the role of several bioactive substances in antibacterial action of honeys. Inhibitory and bactericidal activities of honeys were studied to determine the minimum inhibitory and bactericidal concentrations. The contents of glucose oxidase (GOX) enzyme, hydrogen peroxide (H2O2), and total polyphenols (TP) were determined in honeys. We found that honey samples showed different antibacterial efficacy against the tested bacteria as follows: wildflower honeys > acacia honeys > rapeseed honeys. Overall antibacterial activity of the honeys was statistically-significantly correlated with the contents of H2O2 and TP in honeys. A strong correlation was found between the H2O2 and TP content. On the other hand, no correlation was found between the content of GOX and level of H2O2. Antibacterial activity of 12 selected honeys was markedly reduced by treatment with catalase, but it remained relatively stable after inactivation of GOX with proteinase-K digestion. Obtained results suggest that the antibacterial activity of blossom honeys is mainly mediated by H2O2 levels present in honeys which are affected mainly by polyphenolic substances and not directly by GOX content.
Honeydew honey is increasingly valued due to its pronounced antibacterial potential; however, the underlying mechanism and compounds responsible for the strong antibacterial activity of honeydew honey are still unknown. The aim of this study was to investigate the inhibition of bacterial growth of 23 honeydew honey samples. Activity of bee-derived glucose oxidase (GOX) enzyme, the content of defensin-1 (Def-1) and hydrogen peroxide (H2O2), and total polyphenol content were determined in the 23 honey samples. Our results demonstrated that antibacterial activity of honeydew honey was equivalent to medical-grade manuka and kanuka honey and was abolished by catalase. Although H2O2 is an important factor in the inhibition of bacterial growth, polyphenolic compounds and their interaction with H2O2 are the key factors responsible for high antibacterial activity of honeydew honey. In addition, our results indicated that the antibacterial activity of honeydew honey is not dependent on GOX-mediated production of H2O2 or the presence of Def-1.
Biofilm growth and its persistence within wounds have recently been suggested as contributing factors to impaired healing. The goal of this study was to investigate the anti-biofilm effects of several honey samples of different botanical origin, including manuka honey against Proteus mirabilis and Enterobacter cloacae wound isolates. Quantification of biofilm formation was carried out using a microtiter plate assay. All honeys at a sub-inhibitory concentration of 10% (w/v) significantly reduced the biofilm development of both isolates. Similarly, at a concentration of 50% (w/v), each of the honeys caused significant partial detachment of Pr. mirabilis biofilm after 24 h. On the other hand, no honey was able to significantly detach Ent. cloacae biofilm. In addition, treatment of Ent. cloacae and Pr. mirabilis biofilms with all honeys resulted in a significant decrease in colony-forming units per well values in a range of 0.35-1.16 and 1.2-7.5 log units, respectively. Of the tested honeys, manuka honey possessed the most potent anti-biofilm properties. Furthermore, methylglyoxal, an antibacterial compound of manuka honey, was shown to be responsible for killing biofilm-embedded wound bacteria. These findings suggest that manuka honey could be used as a potential therapy for the treatment of wounds containing Pr. mirabilis or Ent. cloacae.
Matrix metalloproteinase-9 (MMP-9) appears to be a major protease responsible for the degradation of matrix and growth-promoting agents in chronic wounds. Honey has been successfully used for treating non-healing wounds associated with infections. However, the mechanisms of its action at the cellular level have remained poorly understood. The aim of this study was to investigate the effect of fir honeydew honey on TNF-α-induced MMP-9 expression and secretion from human keratinocytes (HaCaT) and to identify the honey component(s) responsible for a discovered effect. A C18 solid-phase column was used for preparation of honey aqueous extract (HAE). Expression and production of MMP-9 by HaCaT cells were determined by reverse transcription-PCR, gelatine zymography and Western blot analysis using a polyclonal antibody against MMP-9. We found that HAE inhibited TNF-α-induced production of MMP-9 in keratinocytes in a dose-dependent manner at both the mRNA and protein levels. Apigenin and kaempferol, identified flavonoids in HAE, markedly inhibited MMP-9 production from HaCaT and epidermal keratinocytes. Taken together, fir honeydew honey, which contains certain flavonoids, prevents TNF-α-induced proteolytic activity in cutaneous inflammation. Thus, our findings provide clear evidence that honey may serve as a natural treatment for dermatological problems associated with a persistent inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.