Antibacterial activity is the most investigated biological property of honey. The goal of this study was to evaluate the antibacterial activity of 57 Slovak blossom honeys against Staphylococcus aureus and Pseudomonas aeruginosa and investigate the role of several bioactive substances in antibacterial action of honeys. Inhibitory and bactericidal activities of honeys were studied to determine the minimum inhibitory and bactericidal concentrations. The contents of glucose oxidase (GOX) enzyme, hydrogen peroxide (H2O2), and total polyphenols (TP) were determined in honeys. We found that honey samples showed different antibacterial efficacy against the tested bacteria as follows: wildflower honeys > acacia honeys > rapeseed honeys. Overall antibacterial activity of the honeys was statistically-significantly correlated with the contents of H2O2 and TP in honeys. A strong correlation was found between the H2O2 and TP content. On the other hand, no correlation was found between the content of GOX and level of H2O2. Antibacterial activity of 12 selected honeys was markedly reduced by treatment with catalase, but it remained relatively stable after inactivation of GOX with proteinase-K digestion. Obtained results suggest that the antibacterial activity of blossom honeys is mainly mediated by H2O2 levels present in honeys which are affected mainly by polyphenolic substances and not directly by GOX content.
Background The phylum Euglenozoa is a group of flagellated protists comprising the diplonemids, euglenids, symbiontids, and kinetoplastids. The diplonemids are highly abundant and speciose, and recent tools have rendered the best studied representative, Diplonema papillatum, genetically tractable. However, despite the high diversity of diplonemids, their lifestyles, ecological functions, and even primary energy source are mostly unknown. Results We designed a metabolic map of D. papillatum cellular bioenergetic pathways based on the alterations of transcriptomic, proteomic, and metabolomic profiles obtained from cells grown under different conditions. Comparative analysis in the nutrient-rich and nutrient-poor media, as well as the absence and presence of oxygen, revealed its capacity for extensive metabolic reprogramming that occurs predominantly on the proteomic rather than the transcriptomic level. D. papillatum is equipped with fundamental metabolic routes such as glycolysis, gluconeogenesis, TCA cycle, pentose phosphate pathway, respiratory complexes, β-oxidation, and synthesis of fatty acids. Gluconeogenesis is uniquely dominant over glycolysis under all surveyed conditions, while the TCA cycle represents an eclectic combination of standard and unusual enzymes. Conclusions The identification of conventional anaerobic enzymes reflects the ability of this protist to survive in low-oxygen environments. Furthermore, its metabolism quickly reacts to restricted carbon availability, suggesting a high metabolic flexibility of diplonemids, which is further reflected in cell morphology and motility, correlating well with their extreme ecological valence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.