Epilepsy is a chronic neurological disorder characterized by recurrent, unprovoked seizures. This study deals with a preliminary investigation to detect epileptic components in the electroencephalogram (EEG) waveform, which results in a reduction of analysis time by the expert neurologist. As an alternative to the Fast Fourier Transform (FFT) spectral analysis approach, an Auto Regressive (AR), a Moving Average (MA) and an Auto Regressive Moving Average (ARMA) model-based spectral estimators can be used to process the EEG signal. An AR signal-processing model for the epileptic EEG is proposed. The AR modelling has been used to analyse physiological signals such as the human EEG. The interpretation of an autoregressive model as a recursive digital filter and its use in spectral estimation are considered. This is used to formulate an analysis model, based on Linear Prediction Coding (LPC). The theory behind the method is explained and the implementation is described. The algorithm is computationally efficient and can be implemented in real-time on a small microcomputer system for on-line analysis. Results produced by this method may be used for further analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.