This paper presents an approximate method for taking into account finite stiffness of bottom grillages in strength calculations of ship installed on one keel track in the dry dock. It compares the approximate method and FEM results for the docking of a 600 t barge platform. The results have shown good correlation. It has been demonstrated that local stresses in the keel near transverse bulkheads might become quite significant.
При постановке судна в док на днищевые перекрытия со стороны килевой дорожки действуют значительные реактивные усилия, вызывающие местные деформации и напряжения в киле, стрингерах и флорах. С днищевых связей усилия передаются в основном на поперечные переборки и в меньшей степени на бортовые перекрытия, что вызывает общий изгиб корпуса судна. Расчеты общей прочности при постановке судов и кораблей в док показывают, что напряжения от общего изгиба корпуса незначительны. Дополнительные локальные напряжения от местного изгиба продольных днищевых связей, и в первую очередь в киле, при использовании балочных моделей либо не учитываются совсем, либо определяются достаточно условно. Альтернативой является использование метода конечных элементов (МКЭ) при достаточно подробном пространственном моделировании связей судна, дока и опорного устройства, что весьма затратно. В данной работе предлагается достаточно простая методика оценки локальных напряжений в киле при постановке судна в сухой док. Методика основана на использовании теории изгиба балок на сплошном упругом основании. Приводится пример расчета баржи-площадки. Показано, что напряжения в киле баржи вблизи поперечных переборок могут достигать недопустимо больших значений. Полученные результаты подтверждаются расчетом по МКЭ трехмерной модели баржи. When the ship is docked, significant reactive forces act on the bottom slabs from the keel track side, causing local deformations and stresses in the keel, stringers and floras. From the bottom braces, forces are transmitted mainly to the transverse bulkheads and, to a lesser extent, to the side floors, which causes a general bending of the ship's hull. Calculations of the total strength when ships and ships are docked show that the stresses from the general bending of the hull are insignificant. Additional local stresses from local bending of longitudinal bottom ties, and primarily in the keel, when using beam models, are either not taken into account at all, or are determined rather conditionally. An alternative is to use the finite element method (FEM) with a sufficiently detailed spatial modeling of the ship, dock and support device connections, which is very costly. This paper proposes a fairly simple method for assessing local stresses in the keel when the ship is in dry dock. The technique is based on the use of the theory of bending of beams on a solid elastic foundation. An example of calculation of the platform barge is given. It is shown that stresses in the keel of a barge near transverse bulkheads can reach unacceptably high values. The results obtained are confirmed by FEM calculations of a three-dimensional model of the barge.
Для восприятия значительной части реакции килевой дорожки при доковании корабля в конструкцию поперечных переборок вводится центральная (доковая) стойка, размеры поперечного сечения которой выбираются из условия ее прочности и устойчивости. В традиционных методиках необходимая площадь поперечного сечения доковой стойки определяется без учета работы обшивки переборки и ближайших к диаметральной плоскости вертикальных стоек, что приводит к значительным размерам и весу доковой стойки. Кроме того, сжимающее усилие в стойке в методиках полагается линейно убывающим от максимального значения у днища до нулевого у палубы. В данной работе численно исследуется взаимодействие конструктивных элементов плоской поперечной переборки корабля при его доковании. Целью исследования является выяснение степени участия обшивки переборки и ближайших к доковой стойке вертикальных стоек в восприятии реакции килевой дорожки и уточнение характера распределения этой реакции по высоте доковой и вертикальных стоек. На первом этапе исследования авторами была разработана более простая плоская конечно-элементная модель собственно переборки. На втором этапе использовалась также разработанная авторами пространственная конечно-элементная модель части корпуса корабля, включающая, кроме самой поперечной переборки, прилегающие к ней палубы, борта и днище. Результаты, полученные по обеим моделям, показывают, что сжимающие напряжения в переборке локализуются в нижней центральной ее части, а реактивное усилие от килевой дорожки распределяется между доковой стойкой, ближайшими к ней вертикальными стойками и обшивкой переборки. Причем по высоте доковой стойки реактивное усилие уменьшается от днища к палубе не линейно, а быстрее, что приводит к увеличению критической нагрузки стойки при прочих равных условиях. Установлено, что при обеспечении устойчивости соседних с доковой вертикальных стоек эффективная площадь обшивки переборки и вертикальных стоек, воспринимающая реакцию килевой дорожки вместе с доковой стойкой, может составить более 50% от площади профиля доковой стойки. To perceive a significant part of the reaction of the keel track when docking a ship, a central (dock) rack is introduced into the structure of transverse bulkheads, the cross-sectional dimensions of which are chosen on the basis of its strength and stability. In classic methods, the required cross-sectional area of the dock rack is determined without taking into account the work of the bulkhead skin and the vertical racks closest to the diametrical plane, which leads to significant size and weight of the dock rack. In addition, the compression force in the rack in the methods is assumed to decrease linearly from the maximum value at the bottom to zero at the deck. In this paper, the interaction of structural elements of a ship's flat transverse bulkhead during its docking is numerically investigated. The purpose of the study is to clarify the degree of participation of the bulkhead skin and the vertical racks closest to the dock stand in the perception of the keel track reaction and to clarify the nature of the distribution of this reaction along the height of the dock and vertical racks. At the first stage of the study, the authors developed a simpler flat finite-element model of the bulkhead itself. At the second stage, the space finite-element model of the ship's hull part developed by the authors was also used, including, in addition to the most transverse bulkhead, the decks, sides and bottom adjacent to it. The results obtained from both models show that the compressive stresses in the bulkhead are localized in its lower central part, and the reactive force from the keel track is distributed between the dock rack, the nearest vertical racks and the bulkhead skin. Moreover, by the height of the dock rack closest to it, the reactive force decreases from the bottom to the deck not linearly, but faster, which leads to an increase in the critical load of the rack, all other things being equal. It has been established that with ensuring the stability of the vertical racks adjacent to the dock, the effective area of the bulkhead skin and vertical racks, which perceives the reaction of the keel track together with the dock rack, can contain more than 50% of the required area of the dock rack’s profile.
This paper describes the efforts of St. Petersburg State Marine Technical University in development of Almaz-K CAD system for structural ship design and in the upgrade of FESTA-2020 FEM-based package for rod element analysis to be applied in Almaz-K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.