A series of novel polyurethane crosslinked structures (PUs) was prepared from α,ω-dihydroxy-(ethylene oxide-poly(dimethylsiloxane)-ethylene oxide) (EO-PDMS-EO), 4,4’-methylenediphenyl diisocyanate and Boltorn® hyperbranched polyester of the third pseudo generation. The hydroxyfunctional hyperbranched aliphatic polyester with 26 end groups was used as crosslinking agent. In order to improve the compatibility of all reactants during the synthesis, PU samples were prepared by a step-growth polymerization in two stages in solution. The soft EO-PDMS-EO segment content was varied in the range from 15 to 40 wt.%. The influence of the EO-PDMS-EO content on the swelling behavior, crosslinking density, hardness, thermal and surface properties of the synthesized PUs was investigated. The structure of the synthesized polyurethanes was confirmed by the presence of specific bands in Fourier transform infrared spectra. Swelling studies were carried out to determine the crosslinking density and polyurethane networks with lower EOPDMS- EO content revealed higher crosslinking density. The glass transition temperature of the synthesized PUs, determined by differential scanning calorimetry, slightly increased from 50 to 58°C by decreasing EO-PDMS-EO content as a consequence of higher crosslinking density of samples. The increase of EO-PDMS-EO content leads to the better thermal stability, as it was confirmed by the value of the starting temperature of thermal degradation. The surface of the polyurethane networks became more hydrophobic with increasing EO-PDMS-EO content. The surface morphology of synthesized polyurethanes was analyzed by scanning electron microscopy
Two series of polyurethane films based on hyperbranched polyester of the second pseudogeneration (Boltorn®), 4,4'-methylenediphenyl diisocyanate and two different siloxane prepolymers, α,ω-dihydroxy-(ethylene oxide-poly(dimethylsiloxane)-ethylene oxide) (EO-PDMS-EO) and α,ω-dihydroxypropyl-poly(dimethylsiloxane) (HP-PDMS), were prepared by two-step polymerization in solution. The influence of the type and content of soft segment on the morphology, thermomechanical and surface properties of the synthesized polyurethanes was studied by atomic force microscopy (AFM), small-angle X-ray scattering (SAXS), scanning electron microscopy (SEM), dynamic mechanical thermal analysis (DMTA) and water absorption measurements. It was found that these techniques confirmed existence of microphase separated morphology. Synthesized polyurethanes exhibited two glass transition temperatures and one second relaxation process. The results showed that polyurethanes based on HP-PDMS had higher surface roughness, better microphase separation and waterproof performances. Samples synthesized with lower PDMS content had less hydrophobic surface, but higher crosslinking density and better thermomechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.