NLR (NOD-like receptor) genes belong to one of the largest gene families in plants. Their role in plants’ resistance to pathogens has been clearly described for many members of this gene family, and dysregulation or overexpression of some of these genes has been shown to induce an autoimmunity state that strongly affects plant growth and yield. For this reason, these genes have to be tightly regulated in their expression and activity, and several regulatory mechanisms are described here that tune their gene expression and protein levels. This gene family is subjected to rapid evolution, and to maintain diversity at NLRs, a plethora of genetic mechanisms have been identified as sources of variation. Interestingly, regulation of gene expression and evolution of this gene family are two strictly interconnected aspects. Indeed, some examples have been reported in which mechanisms of gene expression regulation have roles in promotion of the evolution of this gene family. Moreover, co-evolution of the NLR gene family and other gene families devoted to their control has been recently demonstrated, as in the case of miRNAs.
The Helianthus annuus LEAFY COTYLEDON1-LIKE (HaL1L) gene encodes a heme-activated protein 3 subunit of the CCAAT box-binding factor. The phylogenetic analysis indicates that HaL1L is closely related to LEAFY COTYLEDON1 (LEC1)-type of Arabidopsis thaliana. In particular, the peptide results homologous to the LEC1-LIKE gene of A. thaliana, with which it shares a high amino acid sequence identity (56%). HaL1L transcripts are accumulated primarily at an early stage of sunflower embryogenesis. High levels of HaL1L messenger RNA (mRNA) have been detected in the developing embryo proper, suspensor, endosperm, integument, and integumentary tapetum cells, while in unfertilized ovules, HaL1L mRNA was present at rather low levels. In an attempt to examine the involvement of HaL1L on somatic embryogenesis, a somaclonal variant of H. annuus x H. tuberosus (EMB-2) that produces ectopic embryo- and shoot-like structures, arranged in clusters along leaf veins, was used. We found that the epiphyllous proliferation of ectopic embryos on EMB-2 leaves was associated to HaL1L mRNA accumulation. The detection of HaL1L transcripts was evident in somatic embryos at the heart- and early cotyledon-stage. On the contrary, no signal related to HaL1L transcript accumulation was observed in EMB-2 leaves characterized by the presence of shoot-like structures. Together, these results support the conclusion that the transcription of the HaL1L gene is maintained both in zygotic and in somatic embryogenesis. In addition, the ectopic accumulation of HaL1L mRNA in parenchymal cells around the vascular bundles of epiphyllous leaves opens the possibility that HaL1L could also be involved in switching somatic cell fate towards embryogenic competence.
Pseudomonas syringae pv. actinidiae (Psa) is the causal agent of the bacterial canker, the most devastating disease of kiwifruit vines. Before entering the host tissues, this pathogen has an epiphytic growth phase on kiwifruit flowers and leaves, thus the ecological interactions within epiphytic bacterial community may greatly influence the onset of the infection process. The bacterial community associated to the two most important cultivated kiwifruit species, Actinidia chinensis and Actinidia deliciosa, was described both on flowers and leaves using Illumina massive parallel sequencing of the V3 and V4 variable regions of the 16S rRNA gene. In addition, the effect of plant infection by Psa on the epiphytic bacterial community structure and biodiversity was investigated. Psa infection affected the phyllosphere microbiome structures in both species, however, its impact was more pronounced on A. deliciosa leaves, where a drastic drop in microbial biodiversity was observed. Furthermore, we also showed that Psa was always present in syndemic association with Pseudomonas syringae pv. syringae and Pseudomonas viridiflava, two other kiwifruit pathogens, suggesting the establishment of a pathogenic consortium leading to a higher pathogenesis capacity. Finally, the analyses of the dynamics of bacterial populations provided useful information for the screening and selection of potential biocontrol agents against Psa.
BackgroundSince 2007, bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa) has become a pandemic disease leading to important economic losses in every country where kiwifruit is widely cultivated. Options for controlling this disease are very limited and rely primarily on the use of bactericidal compounds, such as copper, and resistance inducers. Among the latter, the most widely studied is acibenzolar-S-methyl. To elucidate the early molecular reaction of kiwifruit plants (Actinidia chinensis var. chinensis) to Psa infection and acibenzolar-S-methyl treatment, a RNA seq analysis was performed at different phases of the infection process, from the epiphytic phase to the endophytic invasion on acibenzolar-S-methyl treated and on non-treated plants. The infection process was monitored in vivo by confocal laser scanning microscopy.ResultsDe novo assembly of kiwifruit transcriptome revealed a total of 39,607 transcripts, of which 3360 were differentially expressed during the infection process, primarily 3 h post inoculation. The study revealed the coordinated changes of important gene functional categories such as signaling, hormonal balance and transcriptional regulation. Among the transcription factor families, AP2/ERF, MYB, Myc, bHLH, GATA, NAC, WRKY and GRAS were found differentially expressed in response to Psa infection and acibenzolar-S-methyl treatment. Finally, in plants treated with acibenzolar-S-methyl, a number of gene functions related to plant resistance, such as PR proteins, were modulated, suggesting the set-up of a more effective defense response against the pathogen. Weighted-gene coexpression network analysis confirmed these results.ConclusionsOur work provides an in-depth description of the plant molecular reactions to Psa, it highlights the metabolic pathway related to acibenzolar-S-methyl-induced resistance and it contributes to the development of effective control strategies in open field.Electronic supplementary materialThe online version of this article (10.1186/s12864-018-4967-4) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.