Polarization mode dispersion (PMD), especially in "old" fibers, is considered harmful for installation and upgrading of trunk lines. An optical PMD equalizer should have several or many differential group delay (DGD) sections with polarization transformers in between which can endlessly transform any input polarization into a principal state of the following DGD section. The sections must practically have fixed DGD's unless there is only one section. The small-signal baseband transfer function for PMD, higher order PMD, and the necessary number of sections as well as their control by the output signals of an electrical filter bank in the receiver are also discussed in this context. Several PMD equalizers have been realized and successfully tested in transmission systems with bit rates of 10, 20, and 40 Gb/s. The systems operated stably with well-opened eye diagrams for DGD's ranging between 0 and 1.7 bit durations. Best performance is obtained from a distributed PMD equalizer with one piece of polarization-maintaining fiber twisted by 64 stepper motors. The principle can also be realized in LiNbO 3 .
A truly endless polarization stabilization experiment with a tracking speed of 15 krad/s is presented. The high-speed polarization tracking is realized by using calibrated lithium niobate linear retardation waveplates as the polarization transformers combined with a very fast digital controller running on a field-programmable gate array (FPGA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.