A new generation of radiation detectors relies on the crystalline Si and amorphous B (c-Si/a-B) junctions that are prepared through chemical vapor deposition of diborane (B2H6) on Si at low temperature (~400 °C). The Si wafer surface is dominated by the Si{0 0 1}3 × 1 domains that consist of two different Si species at low temperature. Here we investigate the geometry, stability and electronic properties of the hydrogen passivated Si{0 0 1}3 × 1 surfaces with deposited BH n (n = 0 to 3) radicals using parameter-free first-principles approaches. Ab initio molecular dynamics simulations using the density functional theory (DFT) including van der Waals interaction reveal that in the initial stage the BH3 molecules/radicals deposit on the Si(–H), forming (–Si)BH4 radicals which then decompose into (–Si)BH2 with release of H2 molecules. Structural optimizations provide strong local relaxation and reconstructions at the deposited Si surface. Electronic structure calculations reveal the formation of various defect states in the forbidden gap. This indicates limitations of the presently used rigid electron-counting and band-filling models. The attained information enhances our understanding of the initial stage of the PureB process and the electric properties of the products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.