The performance of photovoltaic (PV) systems must be predicted through accurate simulation designs before proceeding to a real-time application to avoid errors. However, predicting the cohesive relationship between current and voltage and estimating the parameters of a single diode model become a perplexing task due to insufficient data in the datasheet of PV panels. This research work presents single-diode solar PV system simulation analysis under different conditions, and the performance is improved by introducing an optimization-based maximum power point tracking (MPPT) strategy. Before simulation, a mathematical model for a single diode and optimization approaches are presented in this research work. Particle swarm optimization (PSO), genetic algorithm (GA), BAT optimization, and grey wolf optimization (GWO) model-based MPPT circuits are designed, and the performances are comparatively analyzed. The simulation results identify the nonlinear relationship between current and voltage and between power and voltage as characteristic curves for different temperature and irradiance values. For maximum power (Pmax), the maximum peak point tracking power and efficiency are analyzed to verify the optimization-based MPPT system. The simulation results demonstrate that the GWO model obtains a maximum tracking efficiency (TE) of 98%, which is much better than that of other optimization techniques.
The multilevel inverter (MLI) has ascertained its gravity in high-power applications for the past three decades through perennial topological modifications from the pristine structure and development of apposite modulation strategies. The benefits, including subtle switch voltage stress, reduced output voltage total harmonic distortion (THD), tolerable electromagnetic compatibility (EMC), minimal switching losses and [Formula: see text]/[Formula: see text] stress, have prepared it as a very promising candidate in high-power drives and electric utility applications. Meanwhile, MLI has few drawbacks such as higher number of switches with associated peripherals (gate driver circuits, protection circuits and heat sinks) which makes the overall system complex, bulky and costly. There have been many attempts to curb the component count in MLI structure. In this paper, a new topology is developed with a perspective to wane the switch count, which also has the ability of working in both symmetrical and asymmetrical modes. The performance of the proposed segmented ladder-structured MLI (SLSMLI) topology is substantiated with simulation study and experimentation.
Multilevel inverters (MLI) are becoming more common in different power applications, such as active filters, elective vehicle drives, and dc power sources. The Multi-Group Marine Predator Algorithm (MGMPA) is introduced in this study for resolving transcendental nonlinear equations utilizing an MLI in a selective harmonic elimination (SHE) approach. Its applicability and superiority over various SHE approaches utilized in recent research may be attributed to its high accuracy, high likelihood of convergence, and improved output voltage quality. For the entire modulation index, the optimum switching angles (SA) from Marine Predator Algorithm (MPA) is utilized to control a three-phase 11-level MLI employing cascaded H-bridge (CHB) architecture to regulate the vital element and eliminate the harmonics. The limitation of SHE is that it is difficult to find solutions for nonlinear equations. As a result, specific optimization approaches must be used. Artificial Intelligence (AI) algorithms can handle such a nonlinear transcendental equation successfully, although their time consumption as well as convergence abilities vary. Here, recurrent neural network (RNN) is considered where the hidden neurons are tuned by MGMPA with the intention of harmonic distortion parameter (HDP) minimization, thus called as enhanced recurrent neural network (ERNN). The method’s resilience and consistency are demonstrated by simulation and analytical findings. The MGMPA method is more effective and appropriate than various algorithms including the MPA, Harris Hawks optimization (HHO), and Whale optimization algorithm (WOA), according to simulation data.
The distributed generation involving multiple photovoltaic sources and synthesizing high-quality ac voltage from those multiple dc sources are nascent research ambits. A host of multilevel inverters (MLIs) has been ascertained for performing above errand diligently, where the component count is obnoxious. The single phase seven-level inverter is an acquiescent compromise between the circuit complexity and the quality of the output. Further enhancement on the performance can be succored through optimizing dc link voltages and switching angles. This paper proposes a component count pruned MLI structure and also a refined genetic algorithm (RGA)-based optimization scheme for the computation of both dc link voltages and switching angles. Previous attempts for this problem have solved the switching angles with the objective of resulting minimum harmonic content in the staircase-shaped output voltage. The dc link voltage of each level is however assumed to be the same and constant. As an extension, RGA-based optimization of both dc link voltages and switching angles is triumphed. The harmonic profile of the proposed switching strategy is simulated and also corroborated by a hardware prototype. In practice, the proposed fundamental switched strategy is apposite, in which each dc voltage can be self-maintained and independently controlled. In addition, a method for designing the passive LC filter is also presented.
Multilevel inverters play a vital role in the industrial and renewable energy sectors due to their flexibility in synthesizing sinusoidal waveforms using a low-pass filter with a medium voltage range. It has several drawbacks, such as a higher number of power component requirements and voltage balancing problems. In this study, a new structure for multilevel inverters has been developed to offer good power quality with minimum number of switching devices and gate driver circuits. The proposed structure is configured to operate in symmetrical and asymmetrical configurations for single/three-phase versions. A simulation study using MATLAB/Simulink has been utilized to study the operating characteristics under both configurations. A laboratory prototype has been built to check the feasibility of the proposed structure for real-time applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.