Large-scale characterization of post-translational modifications (PTMs), such as phosphorylation, acetylation and ubiquitination, has highlighted their importance in the regulation of a myriad of signaling events. While high-throughput technologies have tremendously helped cataloguing the proteins modified by these PTMs, the identification of lysine-methylated proteins, a PTM involving the transfer of one, two or three methyl groups to the e-amine of a lysine side chain, has lagged behind. While the initial findings were focused on the methylation of histone proteins, several studies have recently identified novel non-histone lysinemethylated proteins. This review provides a compilation of all lysine methylation sites reported to date. We also present key examples showing the impact of lysine methylation and discuss the circuitries wired by this important PTM.
Histone variants have been proposed to act as determinants for post-translational modifications (PTM) with widespread regulatory functions. In this report, we identify a histone-modifying enzyme that selectively methylates the replication-dependent histone H3 variant H3.1. The crystal structure of the SET domain of the histone H3 lysine 27 (H3K27) methyltransferase ARABIDOPSIS TRITHORAX-RELATED PROTEIN 5 (ATXR5) in complex with a H3.1 peptide shows that ATXR5 contains a bipartite catalytic domain that specifically “reads” alanine 31 of H3.1. Variation at position 31 between H3.1 and replication-independent H3.3 is conserved in plants and animals, and threonine 31 in H3.3 is responsible for inhibiting the activity of ATXR5 and its paralog ATXR6. Our results suggest a simple model for the mitotic inheritance of the heterochromatic mark H3K27me1 and the protection of H3.3-enriched genes against heterochromatization during DNA replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.