We present unequally spaced linear array synthesis with sidelobe suppression under constraints to beamwidth and null control using a design technique based on a Comprehensive Learning Particle Swarm Optimizer (CLPSO). CLPSO utilizes a new learning strategy that achieves the goal to accelerate the convergence of the classical PSO. Numerical examples are compared to the existing array designs in the literature and to those found by the other evolutionary algorithms. The synthesis examples that are presented show that the CLPSO algorithm outperforms the common PSO algorithms and a real-coded genetic algorithm (GA).Index Terms-Array synthesis, comprehensive learning particle swarm optimizer (CLPSO), genetic algorithms (GAs), linear array design, null control, particle swarm optimization (PSO), sidelobe suppression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.