In recent years there is an apparent shift in research from content based image retrieval (CBIR) to automatic image annotation in order to bridge the gap between low level features and high level semantics of images. Automatic Image Annotation (AIA) techniques facilitate extraction of high level semantic concepts from images by machine learning techniques. Many AIA techniques use feature analysis as the first step to identify the objects in the image. However, the high dimensional image features make the performance of the system worse. This paper describes and evaluates an automatic image annotation framework which uses SURF descriptors to select right number of features and right features for annotation. The proposed framework uses a hybrid approach in which k-means clustering is used in the training phase and fuzzy K-NN classification in the annotation phase. The performance of the system is evaluated using standard metrics.
Crowd behaviour analysis and management have become a significant research problem for the last few years because of the substantial growth in the world population and their security requirements. There are numerous unsolved problems like crowd flow modelling and crowd behaviour detection, which are still open in this area, seeking great attention from the research community. Crowd flow modelling is one of such problems, and it is also an integral part of an intelligent surveillance system. Modelling of crowd flow has now become a vital concern in the development of intelligent surveillance systems. Real-time analysis of crowd behavior needs accurate models that represent crowded scenarios. An intelligent surveillance system supporting a good crowd flow model will help identify the risks in a wide range of emergencies and facilitate human safety. Mathematical models of crowd flow developed from real-time video sequences enable further analysis and decision making. A novel method identifying eight possible crowd flow behaviours commonly seen in the crowd video sequences is explained in this paper. The proposed method uses crowd flow localisation using the Gunnar-Farneback optical flow method. The Jacobian and Hessian matrix analysis along with corresponding eigenvalues helps to find stability points identifying the flow patterns. This work is carried out on 80 videos taken from UCF crowd and CUHK video datasets. Comparison with existing works from the literature proves our method yields better results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.