More than 1200 cultivars, breeding lines, and wild species of Lycopersicon were screened for resistance to the tomato leaf curl virus under field conditions. All accessions of Lycopersicon esculentum were found susceptible to tomato leaf curl virus. Three lines of Lycopersicon hirsutum and one of Lycopersicon peruvianum accessions showed apparent resistance to the tomato leaf curl virus owing to the failure of virus transmission by whiteflies. Morphological analysis by light and scanning electron microscopy revealed distributions of different types of trichomes on leaf surfaces. Lycopersicon hirsutum proved to be the least affected by the leaf curl virus because it did not support whitefly infestation to any extent. Lycopersicon hirsutum differed from other species by the presence of glandular trichomes designated type VIc. Whiteflies became entrapped in the exudate of type VIc trichome glands before they could transmit the virus. Thus, it may be possible to control tomato leaf curl virus transmission by breeding plants with certain types of trichomes, especially trichome type VIc. Key words: leaf curl virus, nonpreference, physical resistance, glandular exudate, trichomes, whitefly.
Tomato leaf curl virus (ToLCV) is a whitefly (Bemisia tabaci) transmitted geminivirus (family Geminiviridae, genus Begomovirus) causing a destructive disease of tomato in many regions of India, East Asia and Australia. While ToLCV isolates from Australia and Taiwan have a single genomic component (designated DNA-A), those from Northern India have two components (DNA-A and DNA-B). The ToLCV isolates from Southern India (Bangalore) previously cloned seem to have a DNA-A-like monopartite genome. We have used degenerate DNA-A-specific PCR primers to clone the genome of a ToLCV isolate (named ToLCV-Ban4) from field-infected tomato plants growing in Bangalore, India, in 1997. Degenerate DNA-B-specific PCR primers have not allowed to amplify a putative DNA-B from infected tomato, at the time when DNA-B fragments were amplified from plants infected by known bipartite begomoviruses. The full-length 2759 nucleotide-long DNA-A-like viral genome was sequenced. Similarly to other monopartite ToLCV and TYLCV isolates, ToLCV-Ban4 contains six open reading frames, two on the virion strand and four on the complementary strand. Sequence comparisons indicated that ToLCV-Ban4 is similar to the other three isolates from Bangalore previously sequenced, and is closely related to ToLCV-Ban2 (approximately 91% nucleotide sequence identity). Phylogenetic analysis showed that the ToLCV isolates from Bangalore constitute a group of viruses separated from those of Northern India. ToLCV-Ban4 was detected in tomato and in its whitefly vector Bemisia tabaci by one or by a combination of ELISA, Southern blot hybridization and PCR. Parameters of virus acquisition, retention and transmission by the whitefly vector were investigated in the laboratory. Single whiteflies were able to acquire ToLCV-Ban4 from infected tomato and to transmit the virus to tomato test plants, but five insects were necessary to achieve 100% transmission. Minimum acquisition access and inoculation access periods were 10 min and 20 min, respectively. A latent period of 6 h was required for B. tabaci to efficiently infect tomato test plants. Following a 24 h acquisition access period the insect retained its ability to infect tomato test plants for 12 days, but not for its entire life. In one insect/one plant inoculation tests, female whiteflies were more efficient (approximately 95%) than males (approximately 25%) in transmitting the virus.
The whitefly, Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae), is generally considered to have originated from the Indian subcontinent, although little information has so far been collected on the molecular diversity of populations present in this region. The genetic diversity of B. tabaci populations from Karnataka State, south India was analysed using the random amplified polymorphic DNA‐polymerase chain reaction (RAPD‐PCR) technique and partial mitochondrial cytochrome oxidase I (mtCOI) gene sequences (689 bases) of 22 selected samples. A total of 108 whitefly samples analysed by RAPD‐PCR produced 89 polymorphic bands, and cluster analyses grouped them according to their geographic origin into ‘north’ and ‘south’ Karnataka. Phylogenetic analysis of mtCOI gene sequences with reference B. tabaci sequences from other Asian countries divided them into three genotypic clusters. Each cluster was supported with high bootstrap values (82–100%) and the individuals belonging to each cluster shared high nucleotide identities (up to 100%). This indicated at least three distinct genotypes, apparently indigenous to India, which are also present in China, Malaysia, Nepal, Pakistan, and Thailand. These coexist with the B biotype, which was first reported in India in 1999, and has since spread rapidly to other states in south India. The B biotype was more common than the indigenous B. tabaci, in locations where it had been present for more than 2 years. This is reminiscent of the situation in the Americas during the early 1990s, where the B biotype replaced existing biotypes and caused unprecedented losses to agriculture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.