We develop a generalized covering space theory for a class of uniform spaces called coverable spaces. Coverable spaces include all geodesic metric spaces, connected and locally pathwise connected compact topological spaces, in particular Peano continua, as well as more pathological spaces like the topologist's sine curve. The uniform universal cover of a coverable space is a kind of generalized cover with universal and lifting properties in the category of uniform spaces and uniformly continuous mappings. Associated with the uniform universal cover is a functorial uniform space invariant called the deck group, which is related to the classical fundamental group by a natural homomorphism. We obtain some specific results for one-dimensional spaces.
In this paper, using connections between Clifford-Wolf isometries and Killing vector fields of constant length on a given Riemannian manifold, we classify simply connected Clifford-Wolf homogeneous Riemannian manifolds. We also get the classification of complete simply connected Riemannian manifolds with the Killing property defined and studied previously by J.E. D'Atri and H.K. Nickerson. In the last part of the paper we study properties of Clifford-Killing spaces, that is, real vector spaces of Killing vector fields of constant length, on odd-dimensional round spheres, and discuss numerous connections between these spaces and various classical objects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.