We report the direct measurement of the persistent current carried by a single electron by means of magnetization experiments on self-assembled InAs=GaAs quantum rings. We measured the first Aharonov-Bohm oscillation at a field of 14 T, in perfect agreement with our model based on the structural properties determined by cross-sectional scanning tunneling microscopy measurements. The observed oscillation magnitude of the magnetic moment per electron is remarkably large for the topology of our nanostructures, which are singly connected and exhibit a pronounced shape asymmetry. DOI: 10.1103/PhysRevLett.99.146808 PACS numbers: 73.21.La, 73.23.Ra, 78.67.Hc In quantum mechanics, particular attention is paid to phenomena occurring due to the phase coherence of charge carriers in doubly connected (ring) topologies. Electrons confined to a submicron ring manifest a topologically determined quantum-interference phenomenon, known as the Aharonov-Bohm (AB) effect [1], as a result of the oscillatory behavior of their energy levels as a function of an applied magnetic field. This behavior is usually associated with the occurrence of oscillatory persistent currents in the ring [2 -4]. Experimental evidence for AB oscillations has been detected in the mesoscopic regime in metallic [5,6] and semiconducting [7,8] rings, containing many electrons. We address the occurrence of the AB effect in defect-free self-assembled semiconductor nanostructures [9][10][11][12][13]. The ability to fill nanostructures with only a few (1-2) electrons offers the unique possibility to detect magnetic field induced oscillations in the persistent current carried by single electron states. We report the first direct measurement by means of ultrasensitive magnetization experiments of the oscillatory persistent current carried by a single electron in self-assembled InAs/GaAs ''volcanolike'' nanostructures. Remarkably, this single electron current occurs even in the absence of an opening [14] in our nanostructures, which is required for the AB effect in the standard treatment [1]. The magnetic field at which the first oscillation in the magnetic moment arises is much higher than expected from the diameter of the quantum rings as determined by atomic force microscopy [13]. However, the experiments are in good agreement with a model based on the structural parameters as determined with cross-sectional scanning tunneling microscopy (XSTM) measurements.The persistent current was determined via the magnetic moment of electrons in a highly homogeneous ensemble of InAs self-assembled nanostructures. The sample was grown by molecular beam epitaxy and contains 29 mutually decoupled periods [ Fig. 1(a)] [15]. Each period consists of a nanostructured InAs layer, between two 24 nm GaAs layers, and a 2 nm doped (7 10 16 cm ÿ3 Si) GaAs layer that provides electrons to the InAs nanostructures. We used a one-dimensional Poisson solver [16] to estimate the average number of electrons per nanostructure to be about 1.5. Considering the two possible spin orientations we ...
Offermans, P.; Koenraad, P.M.; Wolter, J.H.; Granados, D.; Garcia, J.M.; Fomin, V.; Gladilin, V.N.; Devreese, J.T.
Citation for published version (APA):Fomin, V. M., Gladilin, V. N., Klimin, S. N., Devreese, J. T., Kleemans, N. A. J. M., & Koenraad, P. M. (2007). Theory of electron energy spectrum and Aharonov-Bohm effect in self-assembled Inx Ga1-x As quantum rings in GaAs. Physical Review B, 76(23) Please check the document version of this publication:• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. Theory of electron energy spectrum and Aharonov-Bohm effect in self-assembled In x Ga 1−x As quantum rings in GaAs We analyze theoretically the electron energy spectrum and the magnetization of an electron in a strained In x Ga 1−x As/ GaAs self-assembled quantum ring ͑SAQR͒ with realistic parameters, determined from the crosssectional scanning-tunneling microscopy characterization of that nanostructure. The SAQRs have an asymmetric indium-rich craterlike shape with a depression rather than an opening at the center. Although the real SAQR shape differs strongly from an idealized circular-symmetric open ring structure, the Aharonov-Bohm oscillations of the magnetization survive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.