As persistent residents of planktonic bacterial cultures, small colony variants (SCVs) constitute a slow-growing subpopulation with atypical colony morphology and unusual biochemical characteristics that, in the case of clinical isolates, cause latent and recurrent infections. We propose a novel blueprint for the formation of E. coli SCVs through DNA microarray analysis, coupled with complete genome sequencing and verification by qRT-PCR. While others have used DNA microarrays to study quorum sensing in E. coli SCVs, our work represents the first proposal for a combination of novel mutations, amplified by a differential shift in expression of select gene groups that work in concert to establish and maintain the SCV phenotype. This combination of genetic and expression events fall under selective pressure, leading to unequal fitness in our strain, SCV IH9 versus its parental strain, BW7261 (a MG1655 descendant). We hypothesize that this combination of events would ordinarily be lethal for bacteria, but instead confers a survival advantage to SCV IH9 due to its slow growth and resistance to acidic and oxidative stress challenges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.