Program analysis tools typically compute two types of information: (1) may information that is true of all program executions and is used to prove the absence of bugs in the program, and (2) must information that is true of some program executions and is used to prove the existence of bugs in the program. In this paper, we propose a new algorithm, dubbed SMASH, which computes both may and must information compositionally . At each procedure boundary, may and must information is represented and stored as may and must summaries, respectively. Those summaries are computed in a demand driven manner and possibly using summaries of the opposite type. We have implemented SMASH using predicate abstraction (as in SLAM) for the may part and using dynamic test generation (as in DART) for the must part. Results of experiments with 69 Microsoft Windows 7 device drivers show that SMASH can significantly outperform may-only, must-only and non-compositional may-must algorithms. Indeed, our empirical results indicate that most complex code fragments in large programs are actually often either easy to prove irrelevant to the specific property of interest using may analysis or easy to traverse using directed testing. The fine-grained coupling and alternation of may (universal) and must (existential) summaries allows SMASH to easily navigate through these code fragments while traditional may-only, must-only or non-compositional may-must algorithms are stuck in their specific analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.