The aim of this study was to assess the effect of adhesion between the non-polar, ultra-high molecular weight polyethylene (UHMWPE) matrix and the glass fiber fillers of various lengths treated with the commercially available “KH-550” agent, on the mechanical and tribological properties of the UHMWPE-based composites. The motivation was to find the optimal compositions of the polymer composite, for the compression sintering manufacturing of lining plates for the protection of marine venders and construction vehicles, as well as transport equipment. It was shown that the initial powder size at equal molecular weight determined the distribution patterns of the glass fibers in the matrix, and, as a consequence, the mechanical and tribological properties of the composites. Based on the obtained experimental data and the results of the calculation by a developed computer algorithm, control parameters were determined to give practical recommendations (polymer powder size and glass fiber length), for the production of the UHMWPE-composites having specified mechanical and tribological characteristics. The “GUR4022 + 10% LGF” composite, loaded with the chopped 3 mm glass fibers treated with the “KH-550”, was recommended for severe operating conditions (high loads, including impact and abrasive wear). For mild operating conditions (including cases when the silane coupling agent could not be used), the “GUR2122 + 10% MGF” and “GUR2122 + 10% LGF” composites, based on the fine UHMWPE powder, were recommended. However, the cost and technological efficiency of the filler (flowability, dispersibility) and polymer powder processing should be taken into account, in addition to the specified mechanical and tribological properties.
The aim of the study was to develop a design methodology for the UltraHigh Molecular Weight Polyethylene (UHMWPE)-based composites used in friction units. To achieve this, stress–strain analysis was done using computer simulation of the triboloading processes. In addition, the effects of carbon fiber size used as reinforcing fillers on formation of the subsurface layer structures at the tribological contacts as well as composite wear resistance were evaluated. A structural analysis of the friction surfaces and the subsurface layers of UHMWPE as well as the UHMWPE-based composites loaded with the carbon fibers of various (nano-, micro-, millimeter) sizes in a wide range of tribological loading conditions was performed. It was shown that, under the “moderate” tribological loading conditions (60 N, 0.3 m/s), the carbon nanofibers (with a loading degree up to 0.5 wt.%) were the most efficient filler. The latter acted as a solid lubricant. As a result, wear resistance increased by 2.7 times. Under the “heavy” test conditions (140 N, 0.5 m/s), the chopped carbon fibers with a length of 2 mm and the optimal loading degree of 10 wt.% were more efficient. The mechanism is underlined by perceiving the action of compressive and shear loads from the counterpart and protecting the tribological contact surface from intense wear. In doing so, wear resistance had doubled, and other mechanical properties had also improved. It was found that simultaneous loading of UHMWPE with Carbon Nano Fibers (CNF) as a solid lubricant and Long Carbon Fibers (LCF) as reinforcing carbon fibers, provided the prescribed mechanical and tribological properties in the entire investigated range of the “load–sliding speed” conditions of tribological loading.
The mechanical and tribological properties of polyimide (PI)-based composites loaded with polytetrafluoroethylene (PTFE) and milled carbon fibers (MCF) in the as received and annealed states were studied in order to increase adhesion to the polymer matrix. It has been shown that loading with micron-range MCF (200 μm) doubles elastic modulus of the composites while all other physical and mechanical properties remain at neat PI levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.