The effect of thermal action at 1100 °C on the kinetics of phase transformations in the coating, obtained by hot-dip aluminizing of 12Cr18Ni10Ti steel, is studied. It was shown that, after 500 h of exposure, the chemical composition is leveled over the entire volume of the sample. Moreover, the predicted retention time of the heat-resistant properties of the coating at 1100 °C is about 2000 h.
Wood is an irreplaceable structural and biodegradable material, which is subject to swelling, shrinkage, significant deformation of structural elements, and products when its moisture content changes. This paper proposes wood surface modification with reactive copolymers based on glycidyl methacrylate and alkyl methacrylates to impart superhydrophobic properties with initial contact angles up to 166°. Scanning electron microscopy and energy dispersive X‐ray spectroscopy were used to study the features of polymer coating formation and to determine the modifier penetration depth, which was more than 1000 μm. It has been shown that copolymers do not fill the initial capillary system of wood. Modified wood is characterized by stable water‐repellent properties with low‐water diffusion rates, with the water absorption rate reduced by more than three times compared to that of initial wood. Polymer coatings provide water repellency, retain the appearance of original wood, and provide increased buoyancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.