This review describes the experimental studies of contraction in neon, argon and helium, discussing the basic regularities of the phenomenon. These studies, extended over a long time, are still urgent. For pressures that are not too high a noticeable contraction of the plasma glow and a smooth non-monotonic dependence of the degree of contraction on the current are observed. Above a critical pressure the plasma immediately contracts into a bright thin cord, if the current reaches a critical value. A hysteresis phenomenon is observed during the transition from the diffuse state to the contracted state and vice versa. Experiments that show the secondary role of non-homogeneous gas heating for contraction in neon and argon, and the main role for contraction in helium, are described. Studies of the ionization waves (the strata), which propagate as pulses of the current cord area, are reviewed showing the close relationship between contraction and stratification. The roles of various mechanisms leading to the contraction and describing the general picture of the observed phenomena are analysed. For heavy noble gases the main role is played by ionization non-linearity as a function of electron concentration, which is related to the competition of electron-atom and electron-electron collisions. This non-linearity leads to plasma shrinkage and the development of ionization instability in the radial (contraction) and longitudinal (stratification) directions. For helium such non-linearity does not play a leading role, since the frequency of the elastic electron-atom collisions is considered to be constant over a large energy range, and this yields a Maxwellian distribution function. The contraction in helium is defined by thermal effects. In addition, recent studies on the numerical modelling of the contraction are discussed.
In the present work, we experimentally study the formation dynamics of positive column constriction in neon glow discharge at intermediate pressures (pR 50 500 Torr cm = ¸) with the simultaneous development of longitudinal instabilities in the form of moving striations. Discharge current, which exceeded the critical value for the transition to the constricted regime, was modulated by short rectangular pulses in order to avoid the inhomogeneous heating of the gas. During the pulse, the ionization balance was establishing and then discharge was switching to the constricted regime. The temperature field of neutral atoms was determined using interferometric methods based on a scheme of the Michelson interferometer. The heat equation was solved for the stationary and pulsed regimes. It is shown that under the described discharge conditions, in spite of the absence of inhomogeneous gas heating, discharge switches to the constricted regime with the appearance of moving striations. On the basis of the performed experiments, it can be concluded that inhomogeneous gas heating in neon is not the main cause of discharge constriction. A nonlinear dependence of the ionization rate on the electron density related to the Maxwellization of the electron energy distribution function should be considered as the basic mechanism of constriction.
Plasma stratification and excitation of ionization waves is one of the fundamental problems in gas discharge physics. Significant progress in this field is associated with the name of Lev Tsendin. He advocated the need for the kinetic approach to this problem contrary to the traditional hydrodynamic approach, introduced the idea of electron bunching in spatially periodic electric fields, and developed a theory of kinetic resonances for analysis of moving striations in rare gases. The present paper shows how Tsendin's ideas have been further developed and applied for understanding the nature of the well-known S-, P-, and R-striations observed in glow discharges of inert gases at low pressures and currents. We review numerical solutions of a Fokker-Planck kinetic equation in spatially periodic electric fields under the effects of elastic and inelastic collisions of electrons with atoms. We illustrate the formation of kinetic resonances at specific field periods for different shapes of injected Electron Distribution Functions (EDF). Computer simulations illustrate how self-organization of the EDFs occurs under nonlocal conditions and how Gaussian-like peaks moving along resonance trajectories are formed in a certain range of discharge conditions. The calculated EDFs agree well with the experimentally measured EDFs for the S, P, and R striations in noble gases. We discuss how kinetic resonances affect dispersion characteristics of moving striations and mention some non-linear effects associated with glow discharge stratification. We propose further studies of stratification phenomena combining physical kinetics and non-linear physics.
The paper is aimed at investigating the role of inhomogeneous heating of the neutral gas in a constricted glow discharge in neon and argon. It is shown that inhomogeneous heating is not the primary cause of constriction in specified gases at pressures of tens and hundreds Torr cm and reduced currents not exceeding 100-200 mA cm −1 . Constriction of the positive column occurs even with an insignificant gas heating in a pulsed regime. An abrupt constriction is caused by the nonlinear dependence of the ionization number on the electron density. In mentioned discharge conditions the frequency of electron-electron collisions is comparable to the electron energy relaxation frequency due to elastic electron-atom collisions. Thermal effects play a secondary role in the formation of a constricted discharge. At the same time, inhomogeneous gas heating in argon is more notable than in neon. Unlike neon, stationary argon discharge loses spatial stability in a vertically oriented tube as the pressure and current increase and a buoyancy effect takes place in a horizontal orientation. Such difference in the behavior of constricted neon and argon discharges is mainly caused by the difference in shape of elastic electron-atom collision cross sections. Interferometric methods allowed to study the temperature field of neutral atoms, dynamics of both gas heating and ascent of constricted cord. Observed effects are interpreted on the basis of the heat equation and the Navier-Stokes equation. Comparison of experimental and theoretical results shows good agreement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.