International audienceWe report the evaluation of the thermoelectric performance of polycrystalline p-type SnSe, a material in which unprecedented values of the thermoelectric figure of merit ZT have been recently discovered in single crystals. Besides anisotropic transport properties, our results confirm that this compound exhibits intrinsically very low thermal conductivity values. The electrical properties show trends typical of lightly doped, intrinsic semiconductors with thermopower values reaching 500 mu V K-1 in a broad temperature range. An orthorhombic-to-orthorhombic transition sets in at 823 K, a temperature at which the power factor reaches its maximum value. A maximum ZT of 0.5 was obtained at 823 K, suggesting that proper optimization of the transport properties of SnSe might lead to higher ZT values. These findings indicate that this system represents an interesting experimental platform for the search of highly efficient thermoelectric materials
The simple binary SnSe has been recently proposed as a prospective candidate for thermoelectric applications due to its exceptionally low lattice thermal conductivity. However, the thermal transport in single crystals was found to be significantly lower than in polycrystalline samples despite the presence of grain boundary scattering in the latter. In order to better understand the origin of this issue, we report here on a detailed characterization of the thermoelectric properties of a vertical-Bridgman-grown single-crystal of SnSe along the a, b, and c crystallographic axes in a wide range of temperatures (5–700 K). We find that the thermal conductivity features a pronounced Umklapp peak near 12 K whose magnitude depends on the crystal orientation. Unlike prior reports, our results evidence a significant anisotropy between the a, b, and c directions with lattice thermal conductivity values reaching 1.2, 2.3, and 1.7 W m−1 K−1 at 300 K, respectively. While the fundamental reasons behind these differences remain unclear, our results indicate that the intrinsic lattice thermal conductivity of single-crystalline SnSe is likely significantly higher than previously thought.
Polycrystalline samples of the tetrahedrite phase Cu 12 Sb 4Àx Te x S 13 with nominal compositions 0.5 r x r 2.0 were synthesized by two different synthesis routes: from precursors and from direct melting of elements. The crystal structure was verified by single-crystal and powder X-ray diffraction (PXRD), both confirming the successful substitution of Te for Sb in both series. Our chemical analyses evidenced differences between the chemical compositions of the two series of samples likely tied to the synthesis method employed and suggesting off-stoichiometry on the Sb site. High-temperature PXRD and differential scanning calorimetry measurements indicate that these materials are stable up to 623 K.Above this temperature, the decomposition process starts and ends up near 748 K where a Cu 2Ày S-type phase is solely observed. In agreement with the simple electron counting rule and electronic band structure calculations, the electrical resistivity and thermopower increase with increasing x reflecting the gradual shift from a p-type metallic state (x = 0.0) to a p-type semiconducting behavior (x = 2.0). Combined with extremely low lattice thermal conductivity values (k E 0.5 W m À1 K À1 at 623 K), this substitution enables us to optimize the power factor leading to a maximum thermoelectric figure of merit ZT of about 0.8 at 623 K. These results parallel those obtained in prior studies dealing with partial substitutions on the Cu site and enlarge the possibilities to tune the electrical properties of tetrahedrites by extrinsic dopants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.