The aim of the present study was to investigate the antiproliferative and proapoptotic actions of N-(5-benzyl-1,3-thiazol-2-yl)-3,5-dimethyl-1-benzofuran-2-carboxamide derivative (compound 5) in glioma cells in comparison with the actions of temozolomide (TMZ) and doxorubicin (Dox), used as positive controls. The antiproliferative activity of the compound 5, TMZ, and Dox on human glioblastoma U251 and human glioblastoma multiform T98G cells was measured using the MTT test. Western blot analysis, fluorescent microscopy, agarose gel retardation assay, flow cytometric analysis, and the DNA comet assay under alkaline conditions were carried out to study the effect of compound 5 on U251 cells. This compound showed ~20 times higher cytotoxicity toward U251 and T98G cells compared with the effects of TMZ and approximately two times higher activity than that of the Dox. Compound 5 induced apoptosis in U251 cells by PARP1 and caspase 3 cleavage mechanisms, also inducing an increase in the level of Bax and Bim proapoptotic proteins and a decrease in the level of phosho-ERK1/2 kinase. The cytotoxicity of compound 5 was associated with an increase in the production of the hydrogen peroxide and the formation of DNA single-strand breaks. This compound 5 did not intercalate into a DNA molecule. Thus, the novel thiazole derivative (compound 5) proved to be a potential antiglioma drug that showed much higher cytotoxic action on human glioma cells compared with the effects of TMZ and Dox. Its cytotoxicity is associated with apoptosis induction, production of the reactive oxygen species, and formation of DNA single-strand breaks without significant DNA intercalation.
The research aim was to test cytotoxic effects in vitro of seven novel pyrazolothiazolopyrimidine derivatives in targeting several lines of tumor and pseudo-normal mammalian cells. We demonstrated that cytotoxic effects of these derivatives depended on the tissue origin of targeted cells. Leukemia cells were found to be the most sensitive to the action of compounds 2 and 7. Compound 2 demonstrated approximately two times higher toxicity towards the multidrug-resistant sub-line of HL-60/ADR cells compared to the Doxorubicin effect. Antiproliferative action of compounds 2 and 7 dropped in the order: leukemia > melanoma > hepatocarcinoma > glioblastoma > colon carcinoma > breast and ovarian carcinoma cells. These compounds were less toxic than Doxorubicin towards the non-tumor cells. The novel pyrazolothiazolopyrimidine, compound 2, demonstrated high toxicity towards human leukemia and, of special importance, towards multidrug-resistant leukemia cells, and low toxicity towards pseudo-normal cells. K e y w o r d s: pyrazolothiazolopyrimidines, Doxorubicin, antiproliferative activity in vitro.
Bafilomycin A1 potentiates the effect of NAADP by inhibiting the mitochondrial energetic process in lymphoma cells and activity of Na /K -ATPase. The obtained data show promising possibility to use bafilomycin A1 and NAADP as chemotherapeutic agents for lymphoma cells treatment. This is important because lymphomas are seventh most common form of cancer. Today the lymphoma mortality is 15% to 30%, whereas the effectiveness of malignant neoplasms treatment is less than 50%.
10 and 50 µM activate superoxide dismutase and lead to a decrease of the activity of catalase and glutathione peroxidase. This effect suggests that the change in the activity of enzymes leads to accumulation of H 2 O 2 in the lymphoma cells. Such results indicate that the studied substance can realize its cytotoxic effect through the action of the antioxidant system. The obtained data can be used to carry out further preclinical studies of the thiazole derivatives as potential antitumor drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.