.[1] A total of three negative rocket-triggered lightning flashes without return strokes (two from 1997 and one from 1993) are analyzed in this paper in order to study the processes associated with the disintegration of the triggering wire and its replacement by an airplasma channel. It appears that the gap resulting from the vaporization of the triggering wire by the upward-positive leader current is bridged by a leader/return-stroke type process. Electric fields at distances of 50, 110, and 500 m, the corresponding magnetic fields at 500 m, and the currents to ground are examined for the two 1997 flashes. The electric field prior to the triggering wire's vaporization in these flashes exhibits a positive (atmospheric electricity sign convention) millisecond-scale ramp due to the upwardextending positive leader. The electric field changes observed at the three distances just prior to wire vaporization are consistent with an equivalent point charge of about 0.3 C at a height of 1.2 to 1.5 km, suggesting that the charge density distribution at that time is strongly skewed toward the upward positive leader tip. The length of the triggering wire at the time of its vaporization was estimated from still photographs to be about 210-220 m. Following the ramp, a microsecond-scale V-shaped negative pulse, which resembles the close electric field signature of a small dart-leader/return-stroke sequence, is observed. The corresponding magnetic field decreases abruptly, simultaneously with the onset of the leading edge of the V-shaped pulse, to values near zero and remains there for tens of microseconds, indicating the attempted interruption (cutoff) of the upward positive leader current flow to ground through the triggering wire as it is vaporized by this current. Following the abrupt decrease, the magnetic field exhibits a rapid increase at a time corresponding to the trailing edge of the V-shaped electric field pulse, suggesting that the vaporized triggering wire is replaced by an air-plasma channel that becomes part of the upward positive leader channel when electrical connection to ground is restored. For the third triggered lightning flash, from 1993, similar inferences regarding the processes involved in the replacement of the triggering wire by an air-plasma channel are made from high-speed (streak) photography and from measurements of the current to ground and electric field at 30 m. In this flash, the upward positive leader exhibited very pronounced stepping: step current pulses had peaks, as measured at the ground, that were up to a few kiloamperes, and step charges that were up to 100 mC. Characterization of the attempted interruption and the following reestablishment of current to ground in rocket-triggered lightning may have important implications for the understanding of channel current cutoff in natural lightning flashes and may provide new insights into the formation of strokes observed to occur in the same channel within a millisecond or less.INDEX TERMS: 3304
[1] We present a statistical analysis of the salient characteristics of the electric and magnetic fields and their derivatives at distances of 15 m and 30 m from triggered lightning strokes that lowered negative charge to ground. Return stroke current and current derivative characteristics are also presented. The measurements were made during the summers of 1999 and 2000 at Camp Blanding, Florida. Lightning was triggered to a 1 to 2 m strike object at the center of a 70 m  70 m metal-grid ground plane that was buried beneath a few centimeters of soil. The strike object was mounted on the rocket launching system that was located below ground level in a pit. The experiment was designed (1) to minimize the influence of the strike object on the field and field derivative waveforms an (2) to eliminate potential distortions of the field and field derivative waveforms both due to ground surface arcing and due to the propagation of the field being over imperfectly conducting ground. Measurements were made on about 100 return strokes, although not all field quantities were successfully recorded for each stroke. We present histograms and parameters of statistical distributions for the following 28 waveform characteristics: current peak, risetime, and width; current derivative peak, risetime, and width; return-stroke electric field change and field pulse width at 15 m and at 30 m; electric field derivative peak, risetime, and width at 15 m and at 30 m; magnetic field peak, risetime, and width at 15 m and at 30 m; and magnetic field derivative peak, risetime, and width at 15 m and at 30 m. We compare our results with those from previous studies. From this comparison we infer, among other results, that for strikes to our buried metal-grid ground plane the current risetime and width are, on average, smaller than for strikes to concentrated grounding electrodes (vertical ground rods).
We present the results of structural lightning protective system (LPS) tests conducted in 2004 and 2005 at the International Center for Lightning Research and Testing (ICLRT) at Camp Blanding, FL. Lightning was triggered using the rocket-andwire technique, and its current was directly injected into the LPS. The test configurations in 2004 and 2005 differed in the lightning current injection point, number of down conductors, grounding system at the test house, and the use of surge protective devices. The primary objective was to examine the division of the injected lightning current between the grounding system of the test house, and remote ground accessible via the neutral of the power-supply cable. In 2004, the mean value of the peak current entering the electrical circuit neutral in search of its way to remote ground was about 22% of the injected lightning current peak, while in 2005, it was about 59%. For comparison, more than 80% of the injected peak current was observed to enter the electrical circuit neutral in similar 1997 tests at the ICLRT in which a different test house with a different (poorer) grounding system was used (Rakov et al. 2002 [1]). An attempt to model the 2004 and 2005 experiments is presented in a companion paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.