Very strong magnetic fields can arise in non-central heavy-ion collisions at ultrarelativistic energies , which may not decay quickly in a conducting plasma. We carry out relativistic magnetohy-drodynamics (RMHD) simulations to study the effects of this magnetic field on the evolution of the plasma and on resulting flow fluctuations in the ideal RMHD limit. Our results show that magnetic field leads to enhancement in elliptic flow for small impact parameters while it suppresses it for large impact parameters (which may provide a signal for initial stage magnetic field). Interestingly, we find that magnetic field in localized regions can temporarily increase in time as evolving plasma energy density fluctuations lead to reorganization of magnetic flux. This can have important effects on chiral magnetic effect. Magnetic field has non-trivial effects on the power spectrum of flow fluctuations. For very strong magnetic field case one sees a pattern of even-odd difference in the power spectrum of flow coefficients arising from reflection symmetry about the magnetic field direction if initial state fluctuations are not dominant. We discuss the situation of nontrivial magnetic field configurations arising from collision of deformed nuclei and show that it can lead to anomalous elliptic flow. Special (crossed body-body) configurations of deformed nuclei collision can lead to presence of quadrupolar magnetic field which can have very important effects on the rapidity dependence of transverse expansion (similar to beam focusing from quadrupole fields in accelerators).
The novel Parton-Hadron-String Dynamics (PHSD) transport approach is applied to nucleus-nucleus collisions at RHIC energies with respect to differential hadronic spectra in comparison to available data. The PHSD approach is based on a dynamical quasiparticle model for partons (DQPM) matched to reproduce recent lattice-QCD results from the Wuppertal-Budapest group in thermodynamic equilibrium. The transition from partonic to hadronic degrees of freedom is described by covariant transition rates for the fusion of quark-antiquark pairs or three quarks (antiquarks), respectively, obeying flavor current-conservation, color neutrality as well as energy-momentum conservation. Our dynamical studies for heavy-ion collisions at relativistic collider energies are compared to earlier results from the Hadron-String Dynamics (HSD) approach -incorporating no explicit dynamical partonic phase -as well as to experimental data from the STAR, PHENIX, BRAHMS and PHOBOS collaborations for Au+Au collisions at the top RHIC energy of √ s = 200 GeV. We find a reasonable reproduction of hadron rapidity distributions and transverse mass spectra and also a fair description of the elliptic flow of charged hadrons as a function of the centrality of the reaction and the transverse momentum p T . Furthermore, an approximate quark-number scaling of the elliptic flow v 2 of hadrons is observed in the PHSD results, too.
The multiplicity distributions of hadrons produced in central nucleus-nucleus collisions are studied within the hadron-resonance gas model in the large volume limit. The microscopic correlator method is used to enforce conservation of three charges -baryon number, electric charge, and strangeness -in the canonical ensemble. In addition, in the micro-canonical ensemble energy conservation is included.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.