The difference between the phases of superconducting order parameter plays in superconducting circuits the role similar to that played by the electrostatic potential difference required to drive a current in conventional circuits. This fundamental property can be altered by inserting in a superconducting circuit a particular type of weak link, the so-called Josephson π-junction having inverted current-phase relation and enabling a shift of the phase by π. We demonstrate the operation of three superconducting circuits -two of them are classical and one quantum -which all utilize such π-phase shifters realized using superconductor-ferromagnet-superconductor sandwich technology. The classical circuits are based on single-flux-quantum cells, which are shown to be scalable and compatible with conventional niobium-based superconducting electronics. The quantum circuit is a π-phase biased qubit, for which we observe coherent Rabi oscillations and compare the measured coherence time with that of conventional superconducting phase qubits. 1 arXiv:1005.1581v1 [cond-mat.supr-con]
The concept of a fully superconducting integrated receiver is developed and experimentally tested. This single-chip sub-mm wave receiver includes a planar antenna integrated with a SIS mixer and an internal superconducting Josephson-type local oscillator (flux-flow oscillator, FFO). The receiver is tested with a DSB noise temperature below 100 K around 500 GHz being pumped by its internal local oscillator (LO). The instantaneous bandwidth of 15-20% is estimated via FTS and heterodyne measurements that meet the requirements of most practical applications. The far field antenna beam is measured as ≈f/10 with sidelobes below −16 dB that is suitable for coupling to a real telescope antenna. A nine-pixel imaging array receiver with each pixel containing an internally pumped receiver chip is developed and tested. A linewidth of the phase locked FFO as low as 1 Hz is measured relative to a reference oscillator in the frequency range 270-440 GHz. An rf amplifier on the base of a dc SQUID is developed and tested showing a noise figure below 10 K at 4 GHz and a bandwidth of about 300 MHz. This amplifier can be included as a part of an integrated receiver that is valuable for array applications.
We report on the first experimental verification of the Zurek-Kibble scenario in an isolated superconducting ring over a wide parameter range. The probability of creating a single flux quantum spontaneously during the fast normal-superconducting phase transition of a wide Nb loop clearly follows an allometric dependence on the quenching time τ Q , as one would expect if the transition took place as fast as causality permits. However, the observed Zurek-Kibble scaling exponent σ = 0.62 ± 0.15 is two times larger than anticipated for large loops. Assuming Gaussian winding number densities we show that this doubling is well-founded for small annuli.
Flux-flow oscillators ͑FFO's͒ are being developed for integration with a SIS mixer for use in submillimeter wave receivers. The present work contains a detailed experimental study of the dc, microwave, and noise properties of Nb-AlO x -Nb FFO's. A model based on the Josephson self-pumping effect is proposed for an explanation of the experimental current-voltage characteristics. A reliable technique based on harmonic mixing is used to determine the spectral linewidth of the radiation emitted by the integrated FFO's up to 600 GHz. Comprehensive measurements of the dependence of the linewidth on the dynamic resistance and the applied magnetic field have been performed. In the resonant regime a linewidth as small as 200 kHz is obtained at 450 GHz. The experimental data are compared with recent theoretical predictions. ͓S0163-1829͑97͒02233-9͔
It has been argued by Zurek and Kibble that the likelihood of producing defects in a continuous phase transition depends in a characteristic way on the quench rate. In this paper we discuss an improved experiment for measuring the scaling exponent for the production of single fluxons in annular symmetric Josephson tunnel junctions. We find Ӎ 0.5 and show how this can arise from the Kibble-Zurek scenario. Further, we report accurate measurements of the temperature dependence of the junction gap voltage, which allow for precise monitoring of the fast temperature variations during the quench.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.