Virtual human bodies, clothing, and hair are widely used in a number of scenarios such as 3D animated movies, gaming, and online fashion. Machine learning can be used to construct data-driven 3D human bodies, clothing, and hair. In this thesis, we provide a solution to 3D shape and pose estimation under the most challenging situation where only a single image is available and the image is captured in a natural environment with unknown camera calibration. We also demonstrate that a simplified 2D clothing model helps to increase the accuracy of 2D body shape estimation significantly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.