An electric field arises from the influence of a nonuniform static magnetic field on charged colloid particles with magnetic susceptibility different from that of the surrounding liquid. It arises, for example, under the influence of a nonuniform static magnetic field in clusters of electrochemical reaction products created during metal etching, deposition, and corrosion processes without an external electric current passing through an electrolyte near a magnetized electrode surface. The corresponding potential consists of a Nernst potential of inhomogeneous distribution of concentration of colloid particles and a magnetophoretic potential (MPP). This potential has been calculated using a thermodynamic approach based on the equations of thermodynamics of nonequilibrium systems and the Onsager relations for a mass flow of correlated magnetic clusters under a gradient magnetic force in the electrolyte. The conditions under which the MPP contribution to the total electric potential may be significant are discussed with a reference to the example of a corroding spherical ferromagnetic steel electrode.
Liquid-liquid separation near a steel ball surface during etching and deposition processes in crossing gravity and magnetic field was investigated here both experimentally and theoretically. The influence of the Earth gravitation on the shape of the interface between the two quasi-stationary liquid phases in an electrolyte with different magnetic susceptibilities was experimentally observed. The shape of the interface is described theoretically based on the equation of the balance of osmotic, magnetic, and hydrostatic pressures in the Earth's gravity. The impact of Earth's gravity on the shape of the interface in electrolyte is described theoretically for the first time.
The self-organized electric cell voltage of the physical circuit is calculated at etching and deposition of metals at the surface of a magnetized ferromagnetic electrode in an electrolyte without passing an external electrical current. This self-organized voltage arises due to the inhomogeneous distribution of concentration of the effectively dia-or paramagnetic cluster components of an electrolyte at the surface of a ferromagnetic electrode under the effect of inhomogeneous magnetostatic fields. The current density and Lorentz force are calculated in an electrolyte in the vicinity of the magnetized steel ball-shaped electrode. The Lorentz force causes the rotation of an electrolyte around the direction of an external magnetic field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.