Context. Apart from a few targets that were directly imaged by spacecraft, remote sensing techniques are the main source of information about the basic physical properties of asteroids, such as the size, the spin state, or the spectral type. The most widely used observing technique -time-resolved photometry -provides us with data that can be used for deriving asteroid shapes and spin states. In the past decade, inversion of asteroid lightcurves has led to more than a hundred asteroid models. In the next decade, when data from all-sky surveys are available, the number of asteroid models will increase. Combining photometry with, e.g., adaptive optics data produces more detailed models. Aims. We created the Database of Asteroid Models from Inversion Techniques (DAMIT) with the aim of providing the astronomical community access to reliable and up-to-date physical models of asteroids -i.e., their shapes, rotation periods, and spin axis directions. Models from DAMIT can be used for further detailed studies of individual objects, as well as for statistical studies of the whole set. Methods. Most DAMIT models were derived from photometric data by the lightcurve inversion method. Some of them have been further refined or scaled using adaptive optics images, infrared observations, or occultation data. A substantial number of the models were derived also using sparse photometric data from astrometric databases.Results. At present, the database contains models of more than one hundred asteroids. For each asteroid, DAMIT provides the polyhedral shape model, the sidereal rotation period, the spin axis direction, and the photometric data used for the inversion. The database is updated when new models are available or when already published models are updated or refined. We have also released the C source code for the lightcurve inversion and for the direct problem (updates and extensions will follow).
ABSTRACT13 CO(J = 2-1) and C 18 O(J = 2-1) observations of the molecular cloud G285.90+4.53 (Cloud 16) in the Carina Flare supershell (GSH287+04-17) with the APEX telescope are presented. With an algorithm DENDROFIND we identify 51 fragments and compute their sizes and masses. We discuss their mass spectrum and interpret it as being the result of the shell fragmentation process described by the pressure assisted gravitational instability -PAGI. We conclude that the explanation of the clump mass function needs a combination of gravity with pressure external to the shell.
Context. Bubble N107 was discovered in the infrared emission of dust in the plane of the Milky Way Galaxy observed by the Spitzer Space Telescope (GLIMPSE survey: l ≈ 51.• 0, b ≈ 0.• 1). The bubble represents an example of shell-like structures found all over the Milky Way Galaxy. Aims. We aim to analyse the atomic and molecular components of N107, as well as its radio continuum emission. With the help of numerical simulations, we aim to estimate the bubble's age and other parameters that cannot be derived directly from observations. Methods. From the observations of the H (I-GALFA) and13 CO (GRS) lines we derive the bubble's kinematical distance and masses of the atomic and molecular components. With the algorithm DENDROFIND, we decompose molecular material into individual clumps. From the continuum observations at 1420 MHz (VGPS) and 327 MHz (WSRT), we derive the radio flux density and the spectral index. With the numerical code ring, we simulate the evolution of stellar-blown bubbles similar to N107.Results. The total H mass associated with N107 is 5.4 × 10 3 M . The total mass of the molecular component (a mixture of cold gasses of H 2 , CO, He, and heavier elements) is 1.3 × 10 5 M , from which 4.0 × 10 4 M is found along the bubble border. We identified 49 molecular clumps distributed along the bubble's border, with the slope of the clump mass function of −1.1. The spectral index of −0.30 of a strong radio source located apparently within the bubble indicates nonthermal emission, hence part of the flux probably originates in a supernova remnant, not yet catalogued. The numerical simulations suggest N107 is most likely less than 2.25 Myr old. Since the first supernovae explode only after 3 Myr or later, no supernova remnant should be present within the bubble. It may be explained if there is a supernova remnant in the direction towards the bubble, however not associated with it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.