The impact of including membranes for solid liquid separation on the kinetics of nitrogen and phosphorus removal was investigated. To achieve this, a membrane bioreactor (MBR) biological nutrient removal (BNR) activated sludge system was operated. From batch tests on mixed liquor drawn from the MBR BNR system, denitrification and phosphorus removal rates were delineated. Additionally the influence of the high total suspended solids concentrations present in the MBR BNR system and of the limitation of substrate concentrations on the kinetics was investigated. Moreover the ability of activated sludge in this kind of system to denitrify under anoxic conditions with simultaneous phosphate uptake was verified and quantified. The denitrification rates obtained for different mixed liquor (ML) concentrations indicate no effect of ML concentration on the specific denitrification rate. The denitrification took place at a single specific rate (K(2)) with respect to the ordinary heterotrophic organisms (OHOs, i.e. non-PAOs) active mass. Similarly, results have been obtained for the P removal process kinetics: no differences in specific rates were observed for different ML or substrate concentrations. From the P removal batch tests results it seems that the biological phosphorus removal population (PAO) consists of 2 different sets of organisms denitrifying PAO and aerobic PAO.
The use of immersed membranes for solid-liquid separation in biological nutrient removal activated sludge (BNRAS) systems was investigated at lab scale. Two laboratory-scale BNR activated sludge systems were run in parallel, one a MBR system and the other a conventional system with secondary settling tanks. Both systems were in 3 reactor anaerobic, anoxic, aerobic UCT configurations. The systems were set up to have, as far as possible, identical design parameters such as reactor mass fractions, recycles and sludge age. Differences were the influent flow and total reactor volumes, and the higher reactor concentrations in the MBR system. The performances of the two systems were extensively monitored and compared to identify and quantify the influence of the membranes on system response. The MBR UCT system exhibited COD, FSA, TKN, TP and TSS removals that were consistently equivalent or superior to the conventional system. Better P removal in the MBR was attributed to lower observed P uptake in the anoxic zone. High nitrate loads to the anoxic reactor appeared to be the determining factor in stimulating P uptake. The MBR UCT system had a greater sludge production than the conventional system. This was partly attributable to the retention of all solids in the MBR reactor. For steady state design this increase is accommodated by increasing the influent unbiodegradable particulate COD fraction. Additionally an attempt was made to determine the Alpha values in the oxygen transfer rate. This paper briefly summarises and compares the results from both systems, and the conclusions that can be drawn from these results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.