Aims: Isolation of bacterial antagonist for use in the biological control of phytopathogenic fungi like rice blast fungus, Magnaporthe grisea, and to further purify and characterize the antifungal molecule produced by the antagonist.
Methods and Results: Bacterial antagonist exhibiting highest antifungal activity against the rice blast fungus M. grisea was isolated from soil and identified as Bacillus licheniformis BC98. Besides M. grisea, the isolate also inhibited the growth of other phytopathogens such as Curvularia lunata and Rhizoctonia bataticola. Biologically active fractions were isolated from the culture filtrate and further fractionated by reverse‐phase high‐performance liquid chromatography (HPLC) enabling detailed structural characterization of a component of molecular mass 1035 Da. The active peptide was identified as surfactin after 500 MHz 1H NMR analysis. Microscopic analysis of the effect of the antagonist on M. grisea revealed bulbous hyphae showing patchy and vacuolated cytoplasm when observed under the electron microscope.
Conclusions: The antagonistic lipopeptide secreted by B. licheniformis BC98 and identified as surfactin, induced morphological changes in M. grisea, inhibiting its further growth, and thus exhibiting fungicidal activity.
Significance and Impact of the Study: The antagonist inhibits germination of M. grisea, a potent rice phytopathogen, and therefore appears to be a potential candidate for control of rice blast disease.
One of the most prevalent causes of foodborne illnesses worldwide is staphylococcal food poisoning. This study aimed to provide a robust method to extract the bacteria Staphylococcus aureus from food samples using glycan-coated magnetic nanoparticles (MNPs). Then, a cost-effective multi-probe genomic biosensor was designed to detect the nuc gene of S. aureus rapidly in different food matrices. This biosensor utilized gold nanoparticles and two DNA oligonucleotide probes combined to produce a plasmonic/colorimetric response to inform users if the sample was positive for S. aureus. In addition, the specificity and sensitivity of the biosensor were determined. For the specificity trials, the S. aureus biosensor was compared with the extracted DNA of Escherichia coli, Salmonella enterica serovar Enteritidis (SE), and Bacillus cereus. The sensitivity tests showed that the biosensor could detect as low as 2.5 ng/µL of the target DNA with a linear range of up to 20 ng/µL of DNA. With further research, this simple and cost-effective biosensor can rapidly identify foodborne pathogens from large-volume samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.