Univariant analysis revealed that the insulin receptor content of the tumors correlated positively with tumor size (P = 0.014), histological grading (P = 0.030), and the estrogen receptor content (P = 0.035). There were no significant correlations between insulin receptor content and the age, body weight, menopausal status, and nodal involvement of the patients. These studies indicate, therefore, that the insulin receptor content is increased in breast cancers and raise the possibility that the insulin receptor may have a role in the biology of these tumors. (J. Clin. Invest. 1990Invest. . 86:1503Invest. -1510
The insulin receptor (IR) occurs in two isoforms (IR-A and IR-B) resulting from alternative splicing of exon 11 of the gene. The IR-A isoform is predominantly expressed in fetal tissues and malignant cells and binds IGF-II with high affinity. We previously observed that IRs are overexpressed in thyroid cancer cells; now we evaluated whether these cells preferentially express IR-A and produce IGF-II, which would activate a growth-promoting autocrine loop. The IR content ranged 6.0-52.6 ng/100 microg cell membrane protein in thyroid cancer primary cultures (n = 8) and permanent cell lines (n = 6) vs. 1.2-1.7 in normal thyroid cells (n = 11 primary cultures; P < 0.0001). IR-A isoform relative abundance ranged from 36-79% in cancer cells (with the highest values in undifferentiated cancers) vs. 27-39% in normal cells. Similar results were obtained in normal vs. cancer thyroid tissue specimens. IGF-II caused IR autophosphorylation with an ED(50) of 1.5-40.0 nM in cancer cells vs. more than 100 nM in normal cells; IGF-II affinity correlated with the relative abundance of IR-A (r = 0.628; P < 0.0001). IGF-II was expressed in all cancer cells, highly expressed in anaplastic cells, and less expressed in normal cells. In conclusion, malignant thyrocytes, especially when poorly differentiated, produce IGF-II and overexpress IR, predominantly as IGF-II-sensitive isoform A. A growth-promoting autocrine loop is activated, therefore, and may affect thyroid cancer biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.