Effective antimicrobial exposure is essential to treat infections and prevent antimicrobial resistance, both being major public health problems in low and middle income countries (LMIC). Delivery of drug concentrations to the target site is governed by dose and pharmacokinetic processes (absorption, distribution, metabolism and excretion). However, specific data on the pharmacokinetics of antimicrobials in children living in LMIC settings are scarce. Additionally, there are significant logistical constraints to therapeutic drug monitoring that further emphasize the importance of understanding pharmacokinetics and dosing in LMIC. Both malnutrition and diarrheal disease reduce the extent of enteral absorption. Multiple antiretrovirals and antimycobacterial agents, commonly used by children in low resource settings, have potential interactions with other antimicrobials. Hypoalbuminemia, which may be the result of malnutrition, nephrotic syndrome or liver failure, increases the unbound concentrations of protein bound drugs that may therefore be eliminated faster. Kidney function develops rapidly during the first years of life and different inflammatory processes commonly augment renal clearance in febrile children, potentially resulting in subtherapeutic drug concentrations if doses are not adapted. Using a narrative review approach, we outline the effects of growth, maturation and comorbidities on maturational and disease specific effects on pharmacokinetics in children in LMIC.
Background. An increased incidence of thromboembolic events in hospitalised COVID‐19 patients has been demonstrated despite the use of low‐molecular‐weight heparin (LMWH). Antiplatelet therapy prior to admission and early in the disease course has been hypothesised to be protective against thrombosis.Objectives. To describe the bleeding and thrombosis outcomes in hospitalised patients with confirmed COVID‐19 receiving LMWH, with and without concomitant antiplatelet therapy. Secondary objectives were to explore predictors of bleeding and thrombosis outcomes, and dosing practices of antiplatelet therapy and LMWH.
Methods. We conducted a descriptive, cross‐sectional study of bleeding and thrombosis outcomes at Tygerberg Academic Hospital, Cape Town, South Africa, during the first COVID‐19 wave, in 808 hospitalised patients with confirmed COVID‐19 receiving LMWH with and without concomitant antiplatelet therapy. Multivariate logistic regression analysis was performed if predictors were deemed statistically and clinically significant.
Results. Patients receiving both LMWH and antiplatelet therapy had similar bleeding outcomes compared with patients only receiving LMWH (odds ratio (OR) 1.5; 95% confidence interval (CI) 0.6 ‐ 4.0). Patients receiving both LMWH and antiplatelet therapy had increased odds of developing thrombosis compared with patients only receiving LMWH (OR 4.8; 95% CI 2.1 ‐ 10.7).Conclusion. The bleeding risk in COVID‐19 patients receiving both LMWH and antiplatelet therapy was not significantly increased. A potentially higher risk of thrombosis in patients receiving LMWH and antiplatelet therapy was observed. However, this could reflect confounding by indication. Randomised studies are required to further evaluate the use of antiplatelet therapy to treat hospitalised patients with COVID‐19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.