Semiconductor hybrid structures are achieved by interfacing single-walled carbon nanotubes (CNTs) with microstructured porous membranes. Interconnectivity and interplay of nanotubes are achieved by the assistance of adaptive polymers on 3D ordered honeycomb membranes. The buildup of semiconductor interfaces is based on the nanoassembly concept, which includes (a) self-assembly of sacrificial water droplets for tailoring 3D ordered polymeric platforms; (b) directed assembly of carbon nanotubes by sequential layer-by-layer (LBL) deposition; and (c) improvement of the electrical contact between nanotubes and stabilization of the organic−inorganic interface by pHdirected forces. Unprecedented better-quality charge-transfer pathways are achieved by making a large number of connections between nanotubes rather than increasing the adsorption of conductive inorganic materials onto the membrane platforms. Electrical current transfer is generated in hybrid interfaces, wherein fine conductivity function (σ 10 2 S/m) is associated with high-defined porous structure, through a rationalization of the role of intermolecular forces in the assembly process.
Millimetric Mn-doped enstatite (MgSiO 3 ) crystals have been grown by slow cooling in MoO 3 , V 2 O 5 , and Li 2 CO 3 flux. Six starting mixture with different amount of manganese were slowly cooled from 1350°C, 1050°C and 950°C down to 750°C, 650°C and 600°C respectively. The enstatite crystals were characterized by X-ray powder diffraction (XRPD) and scanning electron microscopy with energy-dispersive spectrometry (SEM/EDS). Mn-doped enstatite crystals were reddish in color, euhedral and elongate parallel to c-axis. The largest enstatite crystal obtained is 8.5 mm in length. The effects of growth parameters on yield and size of crystals were studied. Variations observed in crystal size were attributed to the amount of Mn doping. Further characterizations by μ-Raman spectroscopy (μ-R) and cathodoluminescence (CL) allowed to study the effect of Mn doping on some chemical/physical characteristics of the enstatite and to assess its potential in advanced technological applications.
Functional single walled carbon nanotubes (SWCNTs) are assembled onto porous supports by using layer-by-layer (LBL) approaches. Directed nano-assembly of nanotubes is identified as a crucial factor for controlling the combined functions of hybrid-composite membranes, including charge and moisture transport. In both the cases, donor-acceptor interactions are indicated to be responsible for the rearrangement of nanotubes inside the LBL multilayer and their related properties. Aggregation and stratification of the carbon nanotubes along with the availability of selective-site interactions are complementarily investigated by using SEM, Raman and infrared spectroscopy, while high electrical charge and water vapor transfer are achievable, provided that a large number of connections and competitive interactions are allowed. Ohmic behavior is observed for all types of carbon nanotubes, even if better-quality charge transfer pathways are obtained with carboxylated conductive filaments. Likewise, assisted moisture regulation is succeeded when using functional filaments with the capability to establish competitive H-donor-acceptor interactions with water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.