Accessibility to potentiostats is crucial for research development in electrochemistry, but their cost is the principal drawback for their massive use. With the aim to provide an affordable alternative for resource-constrained communities, we present a low-cost, portable electrochemical workstation that integrates an open-source potentiostat based on Arduino and a smartphone application. This graphical user interface allows easy control of electrochemical parameters and real-time visualization of the results. This potentiostat can perform the most used electrochemical techniques of cyclic and linear voltammetry and chronoamperometry, with an operating range of AE225 渭A and AE1.50 V, and results that are comparable with those obtained with commercial potentiostats. Three applications reported here demonstrate the capacity and the good performance of this low-cost potentiostat as a teaching tool: identification of redox pairs, electrochemical characterization of pencil graphite electrodes, and detection of heavy metals using an electrodeposited film of bismuth on the pencil graphite electrode. Furthermore, detailed schemes of the device and its software are entirely available, expecting to provide an open-source potentiostat easy to replicate to further support education in electrochemical fundamentals and instrumentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.