Human dysplastic kidneys are developmental aberrations which are responsible for many of the very young children with chronic renal failure. They contain poorly differentiated metanephric cells in addition to metaplastic elements. We recently demonstrated that apoptosis was prominent in undifferentiated cells around dysplastic tubules (Winyard, P.J.D., J. Nauta, D.S. Lirenman, P. Hardman, V.R. Sams, R.A. Risdon, and A.S. Woolf. 1996. Kidney Int. 49:135-146), perhaps explaining the tendency of some of these organs to regress. In contrast, apoptosis was rare in dysplastic epithelia which are thought to be ureteric bud malformations. On occasion, these tubules form cysts which distend the abdominal cavity (the multicystic dysplastic kidney) and dysplastic kidneys may rarely become malignant. We now demonstrate that dysplastic tubules maintain a high rate of proliferation postnatally and that PAX2, a potentially oncogenic transcription factor, is expressed in these epithelia. In contrast, both cell proliferation and PAX2 are downregulated during normal maturation of human collecting ducts. We demonstrate that BCL2, a protein which prevents apoptosis in renal mesenchymal to epithelial conversion, is expressed ectopically in dysplastic kidney epithelia. We propose that dysplastic cyst formation may be understood in terms of aberrant temporal and spatial expression of master genes which are tightly regulated in the normal program of human nephrogenesis.
Various aberrations of cell biology have been reported in polycystic kidney diseases and in cystic renal dysplasias. A common theme in these disorders is failure of maturation of renal cells which superficially resemble embryonic tissue. Apoptosis is a feature of normal murine nephrogenesis, where it has been implicated in morphogenesis, and fulminant apoptosis occurs in the small, cystic kidneys which develop in mice with null mutations of bcl-2. Therefore, we examined the location and extent of apoptosis in pre- and postnatal samples of human polycystic and dysplastic kidney diseases using propidium iodide staining, in situ end-labeling and electron microscopy. In dysplastic kidneys cell death was prominent in undifferentiated cells around dysplastic tubules and was occasionally found in cystic epithelia. The incidence of apoptosis was significantly greater than in normal controls of comparable age both pre- and postnatally. In the polycystic kidneys there was widespread apoptosis in the interstitium around undilated tubules distant from cysts, in undilated tubules between cysts and in cystic epithelia. The level of apoptosis compared to controls was significantly increased postnatally. A similar increase of cell death was also noted in the early and late stages of renal disease in the polycystic cpk/cpk mouse model. We speculate that deregulation of cell survival in these kidneys may reflect incomplete tissue maturation, and may contribute to the progressive destruction of functional kidney tissue in polycystic kidneys and the spontaneous involution reported in cystic dysplastic kidneys.
Patients with Wilson's disease appear to be vulnerable to the formation of aggressive malignant intra-abdominal tumours during long-term follow-up, irrespective of treatment. Ultrasound scanning of the abdomen seems to be a useful screening procedure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.