The effect of nitrogen-containing compounds (acridine and 1,4-dimethylcarbazole: 14DMCARB) on the hydrodesulfurization of 4,6-dimethyldibenzothiophene (46DMDBT) was studied on a sulfided NiMoP/Al 2 O 3 catalyst in a fixed bed microreactor (340°C, 40 bar). Both nitrogen-containing compounds inhibited the hydrodesulfurization of 46DMDBT. However, the effect of acridine (a basic compound) and mainly its hydrogenated product (presumably 1,2,3,4,5,6,7,8-octahydroacridine: OHA1) was much more significant than the effect of 14DMCARB (a non-basic compound). In the presence of acridine, the socalled direct desulfurization pathway (DDS) of the HDS of 46DMDBT was less affected than the hydrogenation pathway (HYD) and was even slightly promoted when the partial pressure of acridine increased (after a strong initial inhibition). This was ascribed to a cocatalytic contribution of the nitrogen-containing compound to the C-S bond cleavage. 14DMCARB had the same inhibiting effect on both pathways (DDS and HYD). We also demonstrated that acridine inhibited the transformation of 14DMCARB and can explain why carbazoles are generally the main nitrogen impurities present in gasole after hydrotreatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.