Recently, a novel linear brachytherapy source in the form of a coiled wire has become available for use in interstitial implants of various treatment sites such as prostate gland. This source type employs a design completely different from that of most "seed" sources currently on the market, one which improves upon or eliminates several common problems with such sources. Dosimetric characteristics of these sources with active lengths 0.5 cm to 5.0 cm were determined for clinical application. For 0.5 cm and 1.0 cm active length sources, the dose rate constant, radial dose function, and two-dimensional (2D) anisotropy function were experimentally and theoretically determined following the updated AAPM Task Group 43 (TG-43U1) recommendations. Radial dose functions and/or "along-away" matrix functions were also obtained for sources with active lengths 2.0 cm to 5.0 cm. Measurements were performed with LiF thermoluminescent dosimeters in Solid Water phantoms. Measured data was compared to Monte Carlo simulated data in Solid Water utilizing the PTRAN code, version 7.43. After finding the data to be in agreement, Monte Carlo calculations were performed in liquid water to obtain clinically applicable dosimetric data as per TG-43U1 recommendations. The results indicated the dose rate constant of the 0.5 cm long RadioCoil 103Pd source in Solid Water to be 0.641 cGy h(-1) U(-1) when measured, and 0.636 cGy h(-1) U(-1) when simulated by Monte Carlo. The calculated dose rate constant in liquid water was found to be 0.650 cGy h(-1) U(-1). These values are comparable to other commercially available sources. Complete dosimetric data and simulation results are described in this paper. Per TG-43U1, clinical treatment planning systems should utilize the values reported for liquid water.
Recently, various linear source models, for example, Pd103 RadioCoil™, have been introduced to overcome the shortcomings of traditional “seed” type interstitial prostate brachytherapy implants, such as migration and clumping of the seeds. However, the existing prostate treatment‐planning systems have not been updated to perform dose calculation for implants with linear sources greater than 1.0 cm in length. In these investigations, two new models are developed for 3D dose calculation for a prostate implant with linear brachytherapy sources using the commercially available treatment‐planning systems. The proposed models are referred to as the linear‐segmented source (LSS) model and the point‐segmented source (PSS) model. The calculated dose distributions obtained by these models for a single linear source have been validated by their comparison with the Monte Carlo–simulated data. Moreover, these models were used to calculate the dose distributions for a multilinear source prostate implant, and the results were compared to “seed” type implants. The results of these investigations show that the LSS model better approximates the linear sources than the PSS model. Moreover, these models have shown a better approximation of the dose distribution from a linear source for 0.5 cm source segments as compared to 1.0 cm source segments. However, for the points close to the longitudinal axis of the source located outside the region bounded by the active length, both models show differences of approximately ±15%. These deficiencies are attributed to the limitations of the TG43 formalism for elongated sources.PACS number: 87.53.‐j
Recently, various linear source models, for example, Pd103 RadioCoil™, have been introduced to overcome the shortcomings of traditional “seed” type interstitial prostate brachytherapy implants, such as migration and clumping of the seeds. However, the existing prostate treatment‐planning systems have not been updated to perform dose calculation for implants with linear sources greater than 1.0 cm in length. In these investigations, two new models are developed for 3D dose calculation for a prostate implant with linear brachytherapy sources using the commercially available treatment‐planning systems. The proposed models are referred to as the linear‐segmented source (LSS) model and the point‐segmented source (PSS) model. The calculated dose distributions obtained by these models for a single linear source have been validated by their comparison with the Monte Carlo–simulated data. Moreover, these models were used to calculate the dose distributions for a multilinear source prostate implant, and the results were compared to “seed” type implants. The results of these investigations show that the LSS model better approximates the linear sources than the PSS model. Moreover, these models have shown a better approximation of the dose distribution from a linear source for 0.5 cm source segments as compared to 1.0 cm source segments. However, for the points close to the longitudinal axis of the source located outside the region bounded by the active length, both models show differences of approximately ±15%. These deficiencies are attributed to the limitations of the TG43 formalism for elongated sources.PACS number: 87.53.‐j
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.