This works centers on the design of a De Laval (convergent - Divergent) nozzle to accelerate the flow to supersonic or hypersonic speeds and computational analysis of the same. An initial design of the nozzle is made from the method of characteristics. The coding was done in Matlab to obtain the contour of the divergent section for seven different exit Mach numbers viz. 2.5,3,3.5,4,4.5,5 and 5.5.To quantify variation in the minimum length of the nozzle divergent section with respect to the exit mach number, a throat of constant height (0.005m) and width (0.05m) was chosen for all the design. The area exit required for each mach no varying from 1 to 5.5 was plotted using isentropic relations and was also used to verify the exit area of the nozzle for each of those mach numbers. An estimate of the exit pressure ratio is obtained by using isentropic and normal shock relations. With this exit pressure ratio, a more refined verification is done by computational analysis using ANSYS Fluent software for a contour nozzle with exit Mach number 5.5. The spalart Allmaras and k-epsilon model were used for turbulence modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.