The RH (rhesus) blood group locus from RhD-positive donors is composed of two homologous structural genes, one of which encodes the Cc and Ee polypeptides, whereas the other, which is missing in the RhD-negative condition, encodes the D protein that carries the major antigen of the RH system. Recently, different splicing isoforms transcribed from the CcEe gene were isolated. We report now the characterization of two other Rh clones, RhII and RhXIII, generated by alternative choices for poly(A) addition sites that were identified as the RhD gene transcripts. That these cDNAs represented the RhD messenger and that the previously described Rh clones were derived from the CcEe gene was demonstrated by amplification of RhII/XIII sequences only from D-positive genomes and by cloning and sequencing of D- and CcEe-specific gene fragments. The predicted translation product of the RhD mRNA is a 417-amino acid protein (M(r) = 45,500) that exhibited a similar membrane organization with 13 bilayer-spanning domains compared with the polypeptide encoded by the CcEe gene. The D and Cc/Ee polypeptides differ by 36 amino acid substitutions (8.4% divergence), but the NH2- and COOH-terminal regions of the two proteins are well conserved. Similarly, five of the six cysteine residues of the Cc/Ee proteins were conserved in the D protein, including the unique exofacial cysteine, which is critical for antigenic reactivity. The sequence homology between the Cc/Ee and D proteins supports the concept that the genes encoding these polypeptides have evolved by duplication of a common ancestor gene.
The Rh antigen is a multi-subunit complex composed of Rh polypeptides and associated glycoproteins (Rh50, CD47, LW and glycophorin B); these interact in the red cell membrane and are lacking or severely reduced in Rhnull cells. As a result, individuals with Rhnull suffer chronic haemolytic anaemia known as the Rh-deficiency syndrome. Most frequently, Rhnull phenotypes are caused by homozygosity of an autosomal suppressor gene unlinked to the RH locus (Rhnull regulator or Rhmod types). We have analysed the genes and transcripts encoding Rh, CD47 and Rh50 proteins in five such unrelated Rhnull cases. In all patients, we identified alteration of Rh50--frameshift, nucleotide mutations, or failure of amplification--which correlated with Rhnull phenotype. We propose that mutant alleles of Rh50, which map to chromosome 6p11-21.1, are likely candidates for suppressors of the RH locus accounting for most cases of Rh-deficiency.
Several lines of evidence have previously indicated that the RhD, c, and E blood group antigens are most likely carried by three distinct but homologous red blood cell membrane proteins. To determine whether these polypeptides are encoded by one or several related genes, we have performed Southern blot analysis of genomic DNA prepared from donors of different Rh phenotypes. Using an entire Rh cDNA probe and several exon- specific probes covering the cloned gene from its 5′ to 3′ ends, we have shown that the Rh locus carried by the genome of RhD-positive individuals is composed of two different but strongly related genes of identical general organization whether they expressed the C or c and E or e antigens, and, surprisingly, even when they do not express these epitopes, as in the D-- phenotype. The only antigenic variation found to be associated with a consistent genomic polymorphism corresponded to the RhD-positive/RhD-negative phenotypes. Indeed, one of the two Rh genes was completely lacking when the genomes of several unrelated RhD- negative donors were analyzed. From the present study we conclude that one of the two genes of the Rh locus encodes the RhC/c and RhE/e polypeptides while the other encodes the RhD protein. The absence of any D gene and of its postulated allelic form d in the RhD-negative genome explains finally why no Rhd antigen has ever been shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.