The master equation describing non-equilibrium one-dimensional problems like diffusion limited reactions or critical dynamics of classical spin systems can be written as a Schrödinger equation in which the wave function is the probability distribution and the Hamiltonian is that of a quantum chain with nearest neighbor interactions. Since many one-dimensional quantum chains are integrable, this opens a new field of applications. At the same time physical intuition and probabilistic methods bring new insight into the understanding of the properties of quantum chains. A simple example is the asymmetric diffusion of several species of particles which leads naturally to Hecke algebras and qdeformed quantum groups. Many other examples are given. Several relevant technical aspects like critical exponents, correlation functions and finite-size scaling are also discussed in detail.
We consider the one-dimensional partially asymmetric exclusion model with open boundaries. The model describes a system of hard-core particles that hop stochastically in both directions with different rates. At both boundaries particles are injected and extracted. By means of the method of Derrida, Evans, Hakim and Pasquier the stationary probability measure can be expressed as a matrix-product state involving two matrices forming a Fock-like representation of a general quadratic algebra. We obtain the representations of this algebra, which were unknown in the mathematical literature and use the two-dimensional one to derive exact expressions for the density profile and correlation functions. Using the correspondence between the stochastic model and a quantum spin chain, we obtain exact correlation functions for a spin-Heisenberg XXZ chain with non-diagonal boundary terms. Generalizations to other reaction-diffusion models are discussed.
We illustrate through the examples of the osp(2,1) and spl(2,1) algebras the differences between the properties of the irreducible representations of simple graded Lie algebras and simple Lie algebras.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.