Abstract-The LHC main superconducting circuits are composed of up to 154 series-connected dipole magnets and 51 series-connected quadrupole magnets. These magnets operate at 1.9 K in superfluid helium at a nominal current of 11.85 kA. Cold diodes are connected in parallel to each magnet in order to bypass the current in case of a quench in the magnet while ramping down the current in the entire circuit. Both the diodes and the diode leads should therefore be capable of conducting this exponentially decaying current with time constants of up to 100 s. The diode stacks consist of the diodes and their heat sinks, and are essential elements of the protection system from which extremely high reliability is expected. The electrical resistance of 24 diode leads was measured in the LHC machine during operation. Unexpectedly high resistances of the order of 40 μΩ were measured at a few locations, which triggered a comprehensive review of the diode behaviour and of the associated current leads and bolted contacts.In this paper the thermal and mechanical analysis of the critical parts and bolted contacts is presented, and the results are discussed. Due to a lack of mechanical rigidity and stability, the bolted contacts between the diode leads and the busses of the quadrupole magnets have been redesigned. The consolidated design is described, as well as the dedicated tests carried out for its validation prior to implementation during the long shut down of the LHC machine that is scheduled between March 2013 and December 2014.
We present the conceptual design of a dispersive X-ray Absorption Fine Structure (XAFS) beamline for MIR-RORCLE, a new compact laboratory X-ray source. This machine accelerates electrons up to 1,4,6 or 20 MeV (depending upon the model) in a ring and produces X-rays when the electrons collide onto a thin target. The radiation emitted has a white spectrum due to both synchrotron and bremsstrahlung emission. A substantial part of the electrons are recovered after collisions, and the emitted light has high flux, wide energy spectrum and a large angular dispersion.We have opted for a simple beamline design using a collimator, slits, a curved crystal, the sample environment and a CCD. The beamline parameters (position of the mirror, ray of curvature, slit aperture, reflecting angle, etc.) have been optimized by defining and improving a figure of merit. This optimization allows for room constraints (distances among elements), mechanical constraints (minimum curvature radii available) and optical constraints. Further ray tracing simulations using SHADOW3 have been performed to check all the theoretical results, refine the final parameters, quantitative flux calculations and for simulating the image on the CCD camera. Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/26/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx Proc. of SPIE Vol. 8141 814116-10 Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/26/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.