The China Fusion Engineering Test Reactor (CFETR) is the next device in the roadmap for the realization of fusion energy in China, which aims to bridge the gaps between the fusion experimental reactor ITER and the demonstration reactor (DEMO). CFETR will be operated in two phases. Steady-state operation and self-sufficiency will be the two key issues for Phase I with a modest fusion power of up to 200 MW. Phase II aims for DEMO validation with a fusion power over 1 GW. Advanced H-mode physics, high magnetic fields up to 7 T, high frequency electron cyclotron resonance heating and lower hybrid current drive together with off-axis negative-ion neutral beam injection will be developed for achieving steady-state advanced operation. The recent detailed design, research and development (R&D) activities including integrated modeling of operation scenarios, high field magnet, material, tritium plant, remote handling and future plans are introduced in this paper.
Green's-function techniques are used to calculate electron cyclotron current drive (ECCD) efficiency in general tokamak geometry in the low-collisionality regime. Fully relativistic electron dynamics is employed in the theoretical formulation. The highvelocity collision model is used to model Coulomb collisions and a simplified quasilinear rf diffusion operator describes wave-particle interactions. The approximate analytic solutions which are benchmarked with a widely used ECCD model, facilitate time-dependent simulations of tokamak operational scenarios using the non-inductive current drive of electron cyclotron waves.
The Chinese Fusion Engineering Testing Reactor (CFETR), complementing the ITER facility, is aiming to demonstrate fusion energy production up to 200 MW initially and to eventually reach DEMO relevant power level 1 GW, to manifest a high duty factor of 0.3–0.5, and to pursue tritium self-sufficiency with tritium breeding ratio (TBR) >1. The key challenge to meet the missions of the CFETR is to run the machine in steady state (or long pulse) and high duty factor. By using a multi-dimensional code suite with physics-based models, self-consistent steady-state and hybrid mode scenarios for CFETR have been developed under a high magnetic field up to 6.5 T. The negative-ion neutral beam injection together with high frequency electron cyclotron wave and lower hybrid wave (and/or fast wave) are proposed to be used to drive the current. Subsequently the engineering design of CFETR including the magnet system, vacuum system, tritium breeding blanket, divertor, remote handling and maintenance system will be introduced. Some research and development (R&D) activities are also introduced in this paper.
Runaway electrons are calculated to be produced during the rapid plasma cooling resulting from "killer pellet" injection experiments, in general agreement with observations in the DIII-D tokamak. The time-dependent dynamics of the kinetic runaway distributions are obtained with the CQL3D collisional Fokker-Planck code, including the effect of small and large angle collisions and stochastic magnetic field transport losses. The background density, temperature and Z eff are evolved according to the KPRAD deposition and radiation model of pellet-plasma interactions. Three distinct runway mechanisms are apparent: (1) prompt "hot-tail runaways" due to the residual hot electron tail remaining from the pre-cooling phase, (2) "knock-on" runaways produced by large-angle Coulomb
Low aspect ratio tokamaks (LATs) can potentially provide a high ratio of plasma pressure to magnetic pressure β and high plasma current I at a modest size. This opens up the possibility of a high-power density compact fusion power plant. For the concept to be economically feasible, bootstrap current must be a major component of the plasma current, which requires operating at high βp. A high value of the Troyon factor βN and strong shaping is required to allow simultaneous operation at a high-β and high bootstrap fraction. Ideal magnetohydrodynamic stability of a range of equilibria at aspect ratio 1.4 is systematically explored by varying the pressure profile and shape. The pressure and current profiles are constrained in such a way as to assure complete bootstrap current alignment. Both βN and β are defined in terms of the vacuum toroidal field. Equilibria with βN⩾8 and β∼35%–55% exist that are stable to n=∞ ballooning modes. The highest β case is shown to be stable to n=0,1,2,3 kink modes with a conducting wall.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.