Cyber-attacks are deliberate attempts by adversaries to illegally access online information of other individuals or organizations. There are likely to be severe monetary consequences for organizations and its workers who face cyber-attacks. However, currently, little is known on how monetary consequences of cyber-attacks may influence the decision-making of defenders and adversaries. In this research, using a cybersecurity game, we evaluate the influence of monetary penalties on decisions made by people performing in the roles of human defenders and adversaries via experimentation and computational modeling. In a laboratory experiment, participants were randomly assigned to the role of "hackers" (adversaries) or "analysts" (defenders) in a laboratory experiment across three between-subject conditions: Equal payoffs (EQP), penalizing defenders for false alarms (PDF) and penalizing defenders for misses (PDM). The PDF and PDM conditions were 10-times costlier for defender participants compared to the EQP condition, which served as a baseline. Results revealed an increase (decrease) and decrease (increase) in attack (defend) actions in the PDF and PDM conditions, respectively. Also, both attack-and-defend decisions deviated from Nash equilibriums. To understand the reasons for our results, we calibrated a model based on Instance-Based Learning Theory (IBLT) theory to the attack-and-defend decisions collected in the experiment. The model's parameters revealed an excessive reliance on recency, frequency, and variability mechanisms by both defenders and adversaries. We discuss the implications of our results to different cyber-attack situations where defenders are penalized for their misses and false-alarms.
Applications of our results are to networks where the influence of monetary rewards may cause information theft and system damage.
The majority of decision-related research has focused on how the brain computes decisions over outcomes that are positive in expectation. However, much less is known about how the brain integrates information when all possible outcomes in a decision are negative. To study decision-making over negative outcomes, we used fMRI along with a task in which participants had to accept or reject 50/50 lotteries that could result in more or fewer electric shocks compared to a reference amount. We hypothesized that behaviorally, participants would treat fewer shocks from the reference amount as a gain, and more shocks from the reference amount as a loss. Furthermore, we hypothesized that this would be reflected by a greater BOLD response to the prospect of fewer shocks in regions typically associated with gain, including the ventral striatum and orbitofrontal cortex. The behavioral data suggest that participants in our study viewed all outcomes as losses, despite our attempt to induce a status quo. We find that the ventral striatum showed an increase in BOLD response to better potential gambles (i.e., fewer expected shocks). This lends evidence to the idea that the ventral striatum is not solely responsible for reward processing but that it might also signal the relative value of an expected outcome or action, regardless of whether the outcome is entirely appetitive or aversive. We also find a greater response to worse gambles in regions previously associated with aversive valuation, suggesting an opposing but simultaneous valuation signal to that conveyed by the striatum.
Neuroeconomics employs neuroscience techniques to explain decision-making behaviours. Prospect theory, a prominent model of decision-making, features a value function with parameters for risk and loss aversion. Recent work with normal participants identified activation related to loss aversion in brain regions including the amygdala, ventral striatum, and ventromedial prefrontal cortex. However, the brain network for loss aversion in pathologies such as depression has yet to be identified. The aim of the current study is to employ the value function from prospect theory to examine behavioural and neural manifestations of loss aversion in depressed and healthy individuals to identify the neurobiological markers of loss aversion in economic behaviour. We acquired behavioural data and fMRI scans while healthy controls and patients with depression performed an economic decision-making task. Behavioural loss aversion was higher in patients with depression than in healthy controls. fMRI results revealed that the two groups shared a brain network for value function including right ventral striatum, ventromedial prefrontal cortex, and right amygdala. However, the neural loss aversion results revealed greater activations in the right dorsal striatum and the right anterior insula for controls compared with patients with depression, and higher activations in the midbrain region ventral tegmental area for patients with depression compared with controls. These results suggest that while the brain network for loss aversion is shared between depressed and healthy individuals, some differences exist with respect to differential activation of additional areas. Our findings are relevant to identifying neurobiological markers for altered decision-making in the depressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.