A back-arc Black Sea Basin consists of two deep sub-basins – the West-Black Sea (WBS) and the East-Black Sea (EBS) – filled with thick sediments (up to 12–14 km), which are separated by the mid–Black Sea Ridge (MBSR) – a NW trending basement uplift structure. For a better understanding of the lithosphere structure of these two sub-basins, the authors made a comprehensive analysis of the available geological and geophysical data, including carrying out a three-dimensional (3D) gravity back-stripping analysis, a reinterpretation of a number of seismic refraction profiles as well as the re-evaluation of seismological data and local seismic tomography. Inferred differences in the basin architecture and lithosphere structure of the WBS and EBS can be explained by different affinities of the underlying crustal domains and by the peculiarities of their (Cretaceous and younger) rift and post-rift history. Rifting that led to oceanic crust formation in the WBS occurred within the continental crust of the Moesian Platform along Mesozoic sutures with adjoining accreted terranes. The EBS, most probably, formed within the Transcaucasus continental domain due to strike–slip movements along the MBSR. Underthrusting of the EBS oceanic lithosphere beneath the continental domain of the Scythian Platform led to the formation offshore of the Crimean orogen of accretional wedge of Sorokin Trough.
2-D group velocity and 3-D P-wave velocity patterns have been obtained from analyses of the group velocity dispersion of Rayleigh waves in south-eastern Europe and Asia Minor and of the P-wave travel-time residuals along ray-paths with a penetration depth of 100-300 km in southeastern Europe, Asia Minor and the eastern Mediterranean. The inversion procedure used is based on Backus-Gilbert formalism for linear inversion of travel-time data extended to 2-D and 3-D inhomogeneous media. Group velocity distributions have been obtained for periods T = 10,20, 30 s and are in a very good agreement with the well-known characteristics of the crust and upper mantle structure. They can be used for the construction of models of the crust in south-eastern Europe and Asia Minor. The P-wave velocity patterns obtained for the depth interval 50-300 km are discussed in terms of geophysical (regional isostatic anomaly, heat flow) data for the region. It is proposed that the correlation found to exist between the different mapped geophysical parameters can be explained by compositional changes in the low-velocity layer (the increase of the iron content in minerals).
The Greater Caucasus and southern Crimean Mountains form part of a fold–thrust belt located on the northern margin of the Black Sea, south of the Precambrian craton of eastern Europe. Its southern limit is approximated by the Main Caucasus Thrust, which runs to the west from onshore Russia and Georgia along the whole of the northern margin of the Black Sea. The Main Caucasus Thrust is related to a zone of present-day seismicity along the southern Crimea–Caucasus coast of the Black Sea called the Crimea–Caucasus Seismic Zone. Thick continental crust north of the Main Caucasus Thrust lies adjacent to the thin ‘suboceanic' or transitional crust of the Black Sea Basin. A local seismic tomography study of this area in the vicinity of the Kerch and Taman peninsulas, which lie between the Azov Sea and the Black Sea, has been carried out based on 195 weak (mb≤3) earthquakes occurring from 1975 to 2010 and recorded at four permanent and three temporary seismological stations on the Kerch and Taman peninsulas. The results, for a volume of about 200×100 km (east–west and north–south, respectively) and a depth of about 40 km, provide evidence for significant heterogeneity in the P-wave and S-wave velocities. Velocities inferred in the northern part of the model suggest that the continental crust underlying the Crimea–Azov region north of the Main Caucasus Thrust is of different tectonic affinity (cratonic) than that underlying the northeastern part of the Black Sea, south of the Main Caucasus Thrust (Neoproterozoic–Palaeozoic accretionary domain). In the southern part of the model, at depths of 25–40 km, the uppermost mantle below the thin quasi-oceanic crust of the Black Sea has anomalous low P-wave velocities with high P- to S-wave velocity ratios. This is tentatively interpreted as representing serpentinized upper mantle of continental lithosphere exhumed during Cretaceous rifting and lithospheric hyperextension of the eastern Black Sea. The transition between the continental domains and the crust underlain by anomalous upper mantle is closely related to the Crimea–Caucasus Seismic Zone, where earthquake foci deepen northwards, suggesting that the latter is being thrust under the former in this intra-plate setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.