Predictions of the flow over a wall-mounted hump are obtained using solutions of the Reynolds-averaged Navier-Stokes (RANS) equations and Detached-Eddy Simulation (DES). The upstream solution is characterized by a two-dimensional turbulent boundary layer with a thickness approximately half of the maximum hump thickness measured at a location about two chord lengths upstream of the leading edge. The Reynolds number based on the hump chord length is 9.75 × 10 5. A slot at approximately 65% chord (C) is used for flow control via a spatially uniform (with respect to the spanwise coordinate) steady suction, and with alternating suction/blowing. Solutions of the two-and three-dimensional RANS equations are obtained using the Spalart-Allmaras and SST turbulence models. DES is applied to a three-dimensional geometry corresponding to an extruded section of the hump. DES predictions of the baseline case exhibit a threedimensional chaotic structure in the wake, with a mean reverse-flow region that is 20% shorter than predicted by the two-dimensional RANS computations. DES predictions of the pressure coefficient in the separated-flow region for the baseline case exhibit good agreement with measurements and are more accurate than either the S-A or SST RANS results. The simulations also show that blockage effects in the experiments used to assess the predictions are important-3D RANS predictions more accurately predict the pressure distribution upstream and over the front portion of the hump. Predictions of the steady suction case show a reduction in the length of the reverse-flow region, though are less accurate compared to the baseline configuration. Unsteady 2D RANS predictions of the sinusoidal suction/blowing case are used to investigate impedance affects associated with increases in the driving velocity. The simulations show that a factor of four increase in the cavity driving velocity increases the average velocity through the slot by only a factor of 2.7.
Predictions of the flow over a wall-mounted hump are obtained using solutions of the Reynolds-averaged NavierStokes (RANS) equations and detached-eddy simulation (DES). The upstream solution is characterized by a two-dimensional turbulent boundary layer with a thickness approximately half of the maximum hump thickness measured at a location about two chord lengths upstream of the leading edge. The Reynolds number based on the hump chord length is 9.75 × × 10 5 . A slot at approximately 65% chord C is used for flow control via a spatially uniform (with respect to the spanwise coordinate) steady suction and with alternating suction/blowing. Solutions of the two-and three-dimensional RANS equations are obtained using the Spalart-Allmaras (S-A) and shear-stresstransport (SST) turbulence models. DES is applied to a three-dimensional geometry corresponding to an extruded section of the hump. DES predictions of the baseline case exhibit a three-dimensional chaotic structure in the wake, with a mean reverse-flow region that is 20% shorter than predicted by the two-dimensional RANS computations and a mean reattachment length that is in good agreement with measurements. DES predictions of the pressure coefficient in the separated-flow region for the baseline case also exhibit good agreement with measurements and are more accurate than either the S-A or SST RANS results. The simulations also show that blockage effects in the experiments used to assess the predictions are important: three-dimensional RANS predictions more accurately predict the pressure distribution upstream and over the front portion of the hump. Predictions of the steady suction case show a reduction in the length of the reverse-flow region, though are less accurate compared to the baseline configuration. Unsteady two-dimensional RANS predictions of the sinusoidal suction/blowing case are used to investigate impedance affects associated with increases in the driving velocity. The simulations show that a factor of four increase in the cavity driving velocity increases the average velocity through the slot by only a factor of 2.7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.