A central question in the dynamics of vortex lines in superfluids is dissipation on approaching the zero temperature limit T→0. From both NMR measurements and vortex filament calculations, we find that vortex flow remains laminar up to large Reynolds numbers Re{α}∼10(3) in a cylinder filled with 3He-B. This is different from viscous fluids and superfluid 4He, where the corresponding responses are turbulent. In 3He-B, laminar vortex flow is possible in the bulk volume even in the presence of sizable perturbations from axial symmetry to below 0.2Tc. The laminar flow displays no excess dissipation beyond mutual friction, which vanishes in the T→0 limit, in contrast with turbulent vortex motion where dissipation has been earlier measured to approach a large T-independent value at T≲0.2Tc.
Steady-state turbulent motion is created in superfluid 3 He-B at low temperatures in the form of a turbulent vortex front, which moves axially along a rotating cylindrical container of 3 He-B and replaces vortex-free flow with vortex lines at constant density. We present the first measurements on the thermal signal from dissipation as a function of time, recorded at 0.2 Tc during the front motion, which is monitored using NMR techniques. Both the measurements and the numerical calculations of the vortex dynamics show that at low temperatures the density of the propagating vortices falls well below the equilibrium value, i.e. the superfluid rotates at a smaller angular velocity than the container. This is the first evidence for the decoupling of the superfluid from the container reference frame in the zero-temperature limit.
New techniques, both for generating and detecting turbulence in the helium superfluids 3 He-B and 4 He, have recently given insight in how turbulence is started, what the dissipation mechanisms are, and how turbulence decays when it appears as a transient state or when externally applied turbulent pumping is switched off. Important simplifications are obtained by using 3 He-B as working fluid, where the highly viscous normal component is practically always in a state of laminar flow, or by cooling 4 He to low temperatures where the normal fraction becomes vanishingly small. We describe recent studies from the low temperature regime, where mutual friction becomes small or practically vanishes. This allows us to elucidate the mechanisms at work in quantum turbulence on approaching the zero temperature limit.
We report preliminary results of the complementary experimental and numerical studies on spatiotemporal tangle development and streamwise vortex line density (VLD) distribution in counterflowing 4 He. The experiment is set up in a long square channel with VLD and local temperature measured in three streamwise locations. In the steady state we observe nearly streamwisehomogeneous VLD. Experimental second sound data as well as numerical data (vortex filament method in a long planar channel starting with seeding vortices localized in multiple locations) show that the initial build up pattern of VLD displays complex features depending on the position in the channel, but the some tangle properties appear uniform along its length.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.