A series of wind tunnel tests were carried out to determine the effect of shark scale-based vortex generators (SSVG) on a NACA 0015 symmetrical airfoil's aerodynamic characteristics. Three different sets of SSVG with varying geometrical parameters, such as chord length, amplitude, and wavelength, were designed and fabricated using 3D printing. The SSVG models were blended to the baseline NACA 0015 symmetrical airfoil. The wind tunnel experiments were performed over the test airfoil mounted with different sets of SSVG at various angles of attack, ranging from 0° to 24° in increments of 3°, and operating in the range of Re = 2 × 105. The results revealed that the SSVG blended test airfoil reduced the drag and increased the maximum coefficient of lift (CLmax), thereby enhancing the overall aerodynamic performance. The SSVG offered noteworthy aerodynamic benefits by effectively altering the flow and causing significant spanwise variation in the flow properties. Additionally, attempts were made to identify the optimum chordwise location to blend the SSVG for effective use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.