Abstract:The paper presents the results of deep seismic studies on Geophysical Reference Profile 1-SB (Sredneargunsk -Ust-Karenga -Taksimo -Vitim) in East Transbaikalia, Russia. The 1200 km long profile crosses the major tectonic structures of the Central Asian fold belt: the Argun median massif, the Selenga-Stanovoy and Transbaikalia folded regions, and the Baikal rift zone. Its northwestern fragment extends into the Angara-Lena monocline of the Siberian platform. The southeastern (Transbaikalia) and northwestern (Baikal-Patom) fragments of the profile are based on the spot (differential) seismic sounding technique using explosions and 40-tonne vibrators. The southeastern (Transbaikalia) fragment shows small crustal thickness values (~40 km), an almost horizontal position of the Moho, and high velocities of longitudinal waves (~8.4 km/sec) beneath the Moho. The analysis of parallelism graphs and the dynamic expression of the wave refracted from the Moho suggests a less than 5-10 km thick layer of high velocities and low gradients below Moho. The database on the territory of Transbaikalia includes ~200 wave arrival times from large earthquakes, which were refracted at the Moho at distances of ~200-1400 km. As part of the tomographic interpretation, using additional DSS data on the Moho, the territory of Transbaikalia has been mapped to show the patterns of the threshold velocity values at the Moho. The seismic data was used to contour an area with high velocity values in the mantle in the central part of the Mongolia-Okhotsk orogenic belt and the neighboring fold structures of Transbaikalia. According to the analysis of the seismic and geologic data on the study area, the mantle layer with high velocity values in the Mongolian-Okhotsk orogenic belt may be represented by the eclogitic rock plates.Key words: deep seismic sounding (DSS); velocity of longitudinal waves; hodographs from explosions and earthquakes; Moho; Mongolia-Okhotsk orogenic belt For citation : Soloviev V.M., Chechelnitsky V.V., Salnikov A.S., Seleznev V.S., Liseikin A.V., Galyova N.A., 2017. Specific velocity structure of the upper mantle in the Transbaikalia segment of the Mongolia-Okhotsk orogenic belt.
GEODYNAMICS & TECTONOPHYSICS P U B L I S H E D B Y T H E I N S T I T U T E O F T H E E A R T H ' S C R U S T S I B E R I A N B R A N C H O F R U S S I A N A C A D E M Y O F S C I E N C E
Damage to a huge dam can cause great loss of human life and property, but disasters and their consequences can be minimized by implementing effective dam safety monitoring strategies. However, establishing a permanent monitoring system on a huge dam is costly. Additionally, for reasons of national security, many dams and information about them may not be able to be accessed by researchers. Accordingly, continuously monitoring the structural health of a dam by measurement may be difficult. This study presents a way to continuously monitor the health of a dam using vibration signals that are measured not on the dam but close to it. The Sayano-Shushenskaya Dam in Russia is used to demonstrate the idea. Intensive ambient vibration measurements were firstly made once to determine the natural frequencies of the dam. Then the natural frequencies of the dam under varying environmental effects are obtained from the spectra of the seismic records obtained at Cheryomushki seismic station, which is located 4.4 km northeast of the dam. To account for the effects of varying environmental conditions on the natural frequencies, an autoencoder in the form of an unsupervised learning neural network, was employed. The autoencoder was trained using the natural frequencies without using any environmental factors to learn the intrinsic behavior of the dam under varying environmental conditions. The errors between input data to the trained autoencoder and the regenerated data from the autoencoder can be used to determine whether the dam is under normal conditions. A finite element model of the dam was constructed to simulate changes of natural frequencies due to cracks in the dam structure. The results demonstrate that the proposed method can feasibly monitor the structural health of the dam.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.